These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 27776212)

  • 1. Kinetics of Oil Exchange in Nanoemulsions Prepared with the Phase Inversion Concentration Method.
    Hoffmann I; Simon M; Hörmann A; Gravert T; Heunemann P; Rogers SE; Gradzielski M
    Langmuir; 2016 Nov; 32(46):12084-12090. PubMed ID: 27776212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of glycerol on formation, stability, and properties of vitamin-E enriched nanoemulsions produced using spontaneous emulsification.
    Saberi AH; Fang Y; McClements DJ
    J Colloid Interface Sci; 2013 Dec; 411():105-13. PubMed ID: 24050638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of oil type on nanoemulsion formation and Ostwald ripening stability.
    Wooster TJ; Golding M; Sanguansri P
    Langmuir; 2008 Nov; 24(22):12758-65. PubMed ID: 18850732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physical properties and antimicrobial efficacy of thyme oil nanoemulsions: influence of ripening inhibitors.
    Chang Y; McLandsborough L; McClements DJ
    J Agric Food Chem; 2012 Dec; 60(48):12056-63. PubMed ID: 23140446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly stable concentrated nanoemulsions by the phase inversion composition method at elevated temperature.
    Yu L; Li C; Xu J; Hao J; Sun D
    Langmuir; 2012 Oct; 28(41):14547-52. PubMed ID: 22985401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoemulsions prepared by a two-step low-energy process.
    Wang L; Mutch KJ; Eastoe J; Heenan RK; Dong J
    Langmuir; 2008 Jun; 24(12):6092-9. PubMed ID: 18489188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of cinnamon oil nanoemulsions using phase inversion temperature method: Impact of oil phase composition and surfactant concentration.
    Chuesiang P; Siripatrawan U; Sanguandeekul R; McLandsborough L; Julian McClements D
    J Colloid Interface Sci; 2018 Mar; 514():208-216. PubMed ID: 29257975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emulsion ripening through molecular exchange at droplet contacts.
    Roger K; Olsson U; Schweins R; Cabane B
    Angew Chem Int Ed Engl; 2015 Jan; 54(5):1452-5. PubMed ID: 25504340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contrast-Variation Time-Resolved Small-Angle Neutron Scattering Analysis of Oil-Exchange Kinetics Between Oil-in-Water Emulsions Stabilized by Anionic Surfactants.
    Lee YT; Pozzo LD
    Langmuir; 2019 Nov; 35(47):15192-15203. PubMed ID: 31689363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of orange oil nanoemulsion formation by isothermal low-energy methods: influence of the oil phase, surfactant, and temperature.
    Chang Y; McClements DJ
    J Agric Food Chem; 2014 Mar; 62(10):2306-12. PubMed ID: 24564878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and dynamics of nanoemulsions: insights from combining dynamic and static neutron scattering.
    Hoffmann I; Heunemann P; Farago B; Grillo I; Holderer O; Päch M; Gradzielski M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061407. PubMed ID: 23367950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vitamin E-enriched nanoemulsions formed by emulsion phase inversion: factors influencing droplet size and stability.
    Mayer S; Weiss J; McClements DJ
    J Colloid Interface Sci; 2013 Jul; 402():122-30. PubMed ID: 23660020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation and stability of nano-emulsions.
    Tadros T; Izquierdo P; Esquena J; Solans C
    Adv Colloid Interface Sci; 2004 May; 108-109():303-18. PubMed ID: 15072948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of Fixed Oil on Ostwald Ripening of Anti-Oral Cancer Nanoemulsions Loaded with
    Weerapol Y; Manmuan S; Chaothanaphat N; Okonogi S; Limmatvapirat C; Limmatvapirat S; Tubtimsri S
    Pharmaceutics; 2022 Apr; 14(5):. PubMed ID: 35631524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of biodiesel oil-in-water nanoemulsions by mixed surfactants for bifenthrin formulation.
    Yan H; Bao C; Chen X; Yu C; Kong D; Shi J; Lin Q
    RSC Adv; 2019 Apr; 9(21):11649-11658. PubMed ID: 35517036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on the formation of O/W nano-emulsions, by low-energy emulsification method, suitable for cosmeceutical applications.
    Jaworska M; Sikora E; Zielina M; Ogonowski J
    Acta Biochim Pol; 2013; 60(4):779-82. PubMed ID: 24432331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the phase behavior on the properties of ionic nanoemulsions prepared by the phase inversion composition method.
    Maestro A; Solè I; González C; Solans C; Gutiérrez JM
    J Colloid Interface Sci; 2008 Nov; 327(2):433-9. PubMed ID: 18799164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-energy formation of edible nanoemulsions: factors influencing droplet size produced by emulsion phase inversion.
    Ostertag F; Weiss J; McClements DJ
    J Colloid Interface Sci; 2012 Dec; 388(1):95-102. PubMed ID: 22981587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of surfactant charge on antimicrobial efficacy of surfactant-stabilized thyme oil nanoemulsions.
    Ziani K; Chang Y; McLandsborough L; McClements DJ
    J Agric Food Chem; 2011 Jun; 59(11):6247-55. PubMed ID: 21520914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoemulsions prepared by a low-energy emulsification method applied to edible films.
    Bilbao-Sáinz C; Avena-Bustillos RJ; Wood DF; Williams TG; McHugh TH
    J Agric Food Chem; 2010 Nov; 58(22):11932-8. PubMed ID: 20977191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.