These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 27776301)
1. Investigation of the effect of mobile phase composition on selectivity using a solvent-triangle based approach in achiral SFC. Muscat Galea C; Mangelings D; Vander Heyden Y J Pharm Biomed Anal; 2017 Jan; 132():247-257. PubMed ID: 27776301 [TBL] [Abstract][Full Text] [Related]
2. Development of an achiral supercritical fluid chromatography method with ultraviolet absorbance and mass spectrometric detection for impurity profiling of drug candidates. Part I: Optimization of mobile phase composition. Lemasson E; Bertin S; Hennig P; Boiteux H; Lesellier E; West C J Chromatogr A; 2015 Aug; 1408():217-26. PubMed ID: 26195034 [TBL] [Abstract][Full Text] [Related]
3. Method development for impurity profiling in SFC: The selection of a dissimilar set of stationary phases. Galea C; Mangelings D; Heyden YV J Pharm Biomed Anal; 2015; 111():333-43. PubMed ID: 25630237 [TBL] [Abstract][Full Text] [Related]
4. Characterisation of stationary phases in supercritical fluid chromatography with the solvation parameter model V. Elaboration of a reduced set of test solutes for rapid evaluation. West C; Lesellier E J Chromatogr A; 2007 Oct; 1169(1-2):205-19. PubMed ID: 17900598 [TBL] [Abstract][Full Text] [Related]
5. Insights into chiral recognition mechanisms in supercritical fluid chromatography V. Effect of the nature and proportion of alcohol mobile phase modifier with amylose and cellulose tris-(3,5-dimethylphenylcarbamate) stationary phases. Khater S; West C J Chromatogr A; 2014 Dec; 1373():197-210. PubMed ID: 25482039 [TBL] [Abstract][Full Text] [Related]
6. Characterization and use of hydrophilic interaction liquid chromatography type stationary phases in supercritical fluid chromatography. West C; Khater S; Lesellier E J Chromatogr A; 2012 Aug; 1250():182-95. PubMed ID: 22647190 [TBL] [Abstract][Full Text] [Related]
7. Development of an achiral supercritical fluid chromatography method with ultraviolet absorbance and mass spectrometric detection for impurity profiling of drug candidates. Part II. Selection of an orthogonal set of stationary phases. Lemasson E; Bertin S; Hennig P; Boiteux H; Lesellier E; West C J Chromatogr A; 2015 Aug; 1408():227-35. PubMed ID: 26195036 [TBL] [Abstract][Full Text] [Related]
8. Effects of mobile phase composition on retention and selectivity in achiral supercritical fluid chromatography. West C; Lesellier E J Chromatogr A; 2013 Aug; 1302():152-62. PubMed ID: 23830243 [TBL] [Abstract][Full Text] [Related]
9. Effects of high concentrations of mobile phase additives on retention and separation mechanisms on a teicoplanin aglycone stationary phase in supercritical fluid chromatography. Raimbault A; West C J Chromatogr A; 2019 Oct; 1604():460494. PubMed ID: 31488292 [TBL] [Abstract][Full Text] [Related]
10. Purification method development for chiral separation in supercritical fluid chromatography with the solubilities in supercritical fluid chromatographic mobile phases. Gahm KH; Tan H; Liu J; Barnhart W; Eschelbach J; Notari S; Thomas S; Semin D; Cheetham J J Pharm Biomed Anal; 2008 Apr; 46(5):831-8. PubMed ID: 17531426 [TBL] [Abstract][Full Text] [Related]
11. Feasibility of correlating separation of ternary mixtures of neutral analytes via thin layer chromatography with supercritical fluid chromatography in support of green flash separations. Ashraf-Khorassani M; Yan Q; Akin A; Riley F; Aurigemma C; Taylor LT J Chromatogr A; 2015 Oct; 1418():210-217. PubMed ID: 26422305 [TBL] [Abstract][Full Text] [Related]
12. Selectivity in reversed-phase separations: general influence of solvent type and mobile phase pH. Neue UD; Méndez A J Sep Sci; 2007 May; 30(7):949-63. PubMed ID: 17566327 [TBL] [Abstract][Full Text] [Related]
13. Design, synthesis and evaluation of a series of alkylsiloxane-bonded stationary phases for expanded supercritical fluid chromatography separations. Fu Q; Jiang D; Xin H; Dai Z; Cai J; Ke Y; Jin Y; Liang X J Chromatogr A; 2019 May; 1593():127-134. PubMed ID: 30885402 [TBL] [Abstract][Full Text] [Related]
14. Method developments approaches in supercritical fluid chromatography applied to the analysis of cosmetics. Lesellier E; Mith D; Dubrulle I J Chromatogr A; 2015 Dec; 1423():158-68. PubMed ID: 26553956 [TBL] [Abstract][Full Text] [Related]
15. Screening strategy for chiral and achiral separations in supercritical fluid chromatography mode. Speybrouck D; Corens D; Argoullon JM Curr Top Med Chem; 2012; 12(11):1250-63. PubMed ID: 22571787 [TBL] [Abstract][Full Text] [Related]
16. Retention mechanisms in super/subcritical fluid chromatography on packed columns. Lesellier E J Chromatogr A; 2009 Mar; 1216(10):1881-90. PubMed ID: 18996534 [TBL] [Abstract][Full Text] [Related]
17. Hydrophilic interaction chromatography in nonaqueous elution mode for separation of hydrophilic analytes on silica-based packings with noncharged polar bondings. Bicker W; Wu J; Lämmerhofer M; Lindner W J Sep Sci; 2008 Sep; 31(16-17):2971-87. PubMed ID: 18785146 [TBL] [Abstract][Full Text] [Related]
18. Investigation of the effect of column temperature and back-pressure in achiral supercritical fluid chromatography within the context of drug impurity profiling. Muscat Galea C; Slosse A; Mangelings D; Vander Heyden Y J Chromatogr A; 2017 Oct; 1518():78-88. PubMed ID: 28864111 [TBL] [Abstract][Full Text] [Related]
19. [Effect of sample solvents on retention in packed column supercritical fluid chromatography]. Lu F; Liu LL; Wu YT Se Pu; 2000 Mar; 18(2):155-7. PubMed ID: 12541595 [TBL] [Abstract][Full Text] [Related]
20. Effects of organic modifiers on solute retention and electrokinetic migrations in micellar electrokinetic capillary chromatography. Liu Z; Zou H; Ye M; Ni J; Zhang Y Electrophoresis; 1999 Oct; 20(14):2898-908. PubMed ID: 10546826 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]