These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 27776355)

  • 1. Atomic model for the membrane-embedded V
    Mazhab-Jafari MT; Rohou A; Schmidt C; Bueler SA; Benlekbir S; Robinson CV; Rubinstein JL
    Nature; 2016 Nov; 539(7627):118-122. PubMed ID: 27776355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase.
    Zhao J; Benlekbir S; Rubinstein JL
    Nature; 2015 May; 521(7551):241-5. PubMed ID: 25971514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subunit H of the vacuolar (H+) ATPase inhibits ATP hydrolysis by the free V1 domain by interaction with the rotary subunit F.
    Jefferies KC; Forgac M
    J Biol Chem; 2008 Feb; 283(8):4512-9. PubMed ID: 18156183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TM2 but not TM4 of subunit c'' interacts with TM7 of subunit a of the yeast V-ATPase as defined by disulfide-mediated cross-linking.
    Wang Y; Inoue T; Forgac M
    J Biol Chem; 2004 Oct; 279(43):44628-38. PubMed ID: 15322078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal and NMR structures give insights into the role and dynamics of subunit F of the eukaryotic V-ATPase from Saccharomyces cerevisiae.
    Basak S; Lim J; Manimekalai MS; Balakrishna AM; Grüber G
    J Biol Chem; 2013 Apr; 288(17):11930-9. PubMed ID: 23476018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cryo EM structure of intact rotary H
    Nakanishi A; Kishikawa JI; Tamakoshi M; Mitsuoka K; Yokoyama K
    Nat Commun; 2018 Jan; 9(1):89. PubMed ID: 29311594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of the yeast vacuolar ATPase.
    Zhang Z; Zheng Y; Mazon H; Milgrom E; Kitagawa N; Kish-Trier E; Heck AJ; Kane PM; Wilkens S
    J Biol Chem; 2008 Dec; 283(51):35983-95. PubMed ID: 18955482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coordinated conformational changes in the V
    Vasanthakumar T; Keon KA; Bueler SA; Jaskolka MC; Rubinstein JL
    Nat Struct Mol Biol; 2022 May; 29(5):430-439. PubMed ID: 35469063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural features and nucleotide-binding capability of the C subunit are integral to the regulation of the eukaryotic V1Vo ATPases.
    Grüber G
    Biochem Soc Trans; 2005 Aug; 33(Pt 4):883-5. PubMed ID: 16042619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The 3.5-Å CryoEM Structure of Nanodisc-Reconstituted Yeast Vacuolar ATPase V
    Roh SH; Stam NJ; Hryc CF; Couoh-Cardel S; Pintilie G; Chiu W; Wilkens S
    Mol Cell; 2018 Mar; 69(6):993-1004.e3. PubMed ID: 29526695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subnanometre-resolution structure of the intact Thermus thermophilus H+-driven ATP synthase.
    Lau WC; Rubinstein JL
    Nature; 2011 Dec; 481(7380):214-8. PubMed ID: 22178924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proton translocation driven by ATP hydrolysis in V-ATPases.
    Kawasaki-Nishi S; Nishi T; Forgac M
    FEBS Lett; 2003 Jun; 545(1):76-85. PubMed ID: 12788495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Horizontal membrane-intrinsic α-helices in the stator a-subunit of an F-type ATP synthase.
    Allegretti M; Klusch N; Mills DJ; Vonck J; Kühlbrandt W; Davies KM
    Nature; 2015 May; 521(7551):237-40. PubMed ID: 25707805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into water accessible pathways and the inactivation mechanism of proton translocation by the membrane-embedded domain of V-type ATPases.
    Krah A; Marzinek JK; Bond PJ
    Biochim Biophys Acta Biomembr; 2019 May; 1861(5):1004-1010. PubMed ID: 30831075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MgATP hydrolysis destabilizes the interaction between subunit H and yeast V
    Sharma S; Oot RA; Wilkens S
    J Biol Chem; 2018 Jul; 293(27):10718-10730. PubMed ID: 29754144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Affinity Purification and Structural Features of the Yeast Vacuolar ATPase Vo Membrane Sector.
    Couoh-Cardel S; Milgrom E; Wilkens S
    J Biol Chem; 2015 Nov; 290(46):27959-71. PubMed ID: 26416888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localization of subunit C (Vma5p) in the yeast vacuolar ATPase by immuno electron microscopy.
    Zhang Z; Inoue T; Forgac M; Wilkens S
    FEBS Lett; 2006 Apr; 580(8):2006-10. PubMed ID: 16546180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis of V-ATPase V
    Wang H; Bueler SA; Rubinstein JL
    Proc Natl Acad Sci U S A; 2023 Feb; 120(6):e2217181120. PubMed ID: 36724250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical inhibition of isolated V
    Kishikawa JI; Nakanishi A; Furuta A; Kato T; Namba K; Tamakoshi M; Mitsuoka K; Yokoyama K
    Elife; 2020 Jul; 9():. PubMed ID: 32639230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of intact Thermus thermophilus V-ATPase by cryo-EM reveals organization of the membrane-bound V(O) motor.
    Lau WC; Rubinstein JL
    Proc Natl Acad Sci U S A; 2010 Jan; 107(4):1367-72. PubMed ID: 20080582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.