These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 27776476)
1. Targeting NO/cGMP Signaling in the CNS for Neurodegeneration and Alzheimer's Disease. Ben Aissa M; Lee SH; Bennett BM; Thatcher GR Curr Med Chem; 2016; 23(24):2770-2788. PubMed ID: 27776476 [TBL] [Abstract][Full Text] [Related]
2. Modulating nitric oxide signaling in the CNS for Alzheimer's disease therapy. Zhihui Q Future Med Chem; 2013 Aug; 5(12):1451-68. PubMed ID: 23919554 [TBL] [Abstract][Full Text] [Related]
3. Amyloid-beta peptide inhibits activation of the nitric oxide/cGMP/cAMP-responsive element-binding protein pathway during hippocampal synaptic plasticity. Puzzo D; Vitolo O; Trinchese F; Jacob JP; Palmeri A; Arancio O J Neurosci; 2005 Jul; 25(29):6887-97. PubMed ID: 16033898 [TBL] [Abstract][Full Text] [Related]
4. Cyclic GMP and nitric oxide synthase in aging and Alzheimer's disease. Domek-Łopacińska KU; Strosznajder JB Mol Neurobiol; 2010 Jun; 41(2-3):129-37. PubMed ID: 20213343 [TBL] [Abstract][Full Text] [Related]
5. Involvement of the nitric oxide pathway in synaptic dysfunction following amyloid elevation in Alzheimer's disease. Puzzo D; Palmeri A; Arancio O Rev Neurosci; 2006; 17(5):497-523. PubMed ID: 17180876 [TBL] [Abstract][Full Text] [Related]
6. The CNS-penetrant soluble guanylate cyclase stimulator CYR119 attenuates markers of inflammation in the central nervous system. Correia SS; Liu G; Jacobson S; Bernier SG; Tobin JV; Schwartzkopf CD; Atwater E; Lonie E; Rivers S; Carvalho A; Germano P; Tang K; Iyengar RR; Currie MG; Hadcock JR; Winrow CJ; Jones JE J Neuroinflammation; 2021 Sep; 18(1):213. PubMed ID: 34537066 [TBL] [Abstract][Full Text] [Related]
7. Homogeneous single-label cGMP detection platform for the functional study of nitric oxide-sensitive (soluble) guanylyl cyclases and cGMP-specific phosphodiesterases. Kopra K; Sharina I; Martin E; Härmä H Sci Rep; 2020 Oct; 10(1):17469. PubMed ID: 33060787 [TBL] [Abstract][Full Text] [Related]
8. Conventional and Unconventional Mechanisms for Soluble Guanylyl Cyclase Signaling. Gao Y J Cardiovasc Pharmacol; 2016 May; 67(5):367-72. PubMed ID: 26452163 [TBL] [Abstract][Full Text] [Related]
9. The Impact of the Nitric Oxide (NO)/Soluble Guanylyl Cyclase (sGC) Signaling Cascade on Kidney Health and Disease: A Preclinical Perspective. Krishnan SM; Kraehling JR; Eitner F; Bénardeau A; Sandner P Int J Mol Sci; 2018 Jun; 19(6):. PubMed ID: 29890734 [TBL] [Abstract][Full Text] [Related]
10. Cyclic Nucleotides Signaling and Phosphodiesterase Inhibition: Defying Alzheimer's Disease. Sharma VK; Singh TG; Singh S Curr Drug Targets; 2020; 21(13):1371-1384. PubMed ID: 32718286 [TBL] [Abstract][Full Text] [Related]
11. Kinetics of nitric oxide-cyclic GMP signalling in CNS cells and its possible regulation by cyclic GMP. Wykes V; Bellamy TC; Garthwaite J J Neurochem; 2002 Oct; 83(1):37-47. PubMed ID: 12358727 [TBL] [Abstract][Full Text] [Related]
12. Synaptic and memory dysfunction induced by tau oligomers is rescued by up-regulation of the nitric oxide cascade. Acquarone E; Argyrousi EK; van den Berg M; Gulisano W; Fà M; Staniszewski A; Calcagno E; Zuccarello E; D'Adamio L; Deng SX; Puzzo D; Arancio O; Fiorito J Mol Neurodegener; 2019 Jun; 14(1):26. PubMed ID: 31248451 [TBL] [Abstract][Full Text] [Related]
13. Phosphodiesterases in the central nervous system. Kleppisch T Handb Exp Pharmacol; 2009; (191):71-92. PubMed ID: 19089326 [TBL] [Abstract][Full Text] [Related]
14. The Endothelium-Dependent Nitric Oxide-cGMP Pathway. Mónica FZ; Bian K; Murad F Adv Pharmacol; 2016; 77():1-27. PubMed ID: 27451093 [TBL] [Abstract][Full Text] [Related]
15. cGMP signalling in the mammalian brain: role in synaptic plasticity and behaviour. Kleppisch T; Feil R Handb Exp Pharmacol; 2009; (191):549-79. PubMed ID: 19089345 [TBL] [Abstract][Full Text] [Related]
16. Effects of the NO/soluble guanylate cyclase/cGMP system on the functions of human platelets. Makhoul S; Walter E; Pagel O; Walter U; Sickmann A; Gambaryan S; Smolenski A; Zahedi RP; Jurk K Nitric Oxide; 2018 Jun; 76():71-80. PubMed ID: 29550521 [TBL] [Abstract][Full Text] [Related]
17. Role of the nitric oxide-soluble guanylyl cyclase pathway in obstructive airway diseases. Dupont LL; Glynos C; Bracke KR; Brouckaert P; Brusselle GG Pulm Pharmacol Ther; 2014 Oct; 29(1):1-6. PubMed ID: 25043200 [TBL] [Abstract][Full Text] [Related]
18. Nitric-oxide-dependent activation of pig oocytes: the role of the cGMP-signalling pathway. Petr J; Rajmon R; Chmelíková E; Tománek M; Lánská V; Pribánová M; Jílek F Zygote; 2006 Feb; 14(1):9-16. PubMed ID: 16700970 [TBL] [Abstract][Full Text] [Related]
19. The Potential of sGC Modulators for the Treatment of Age-Related Fibrosis: A Mini-Review. Sandner P; Berger P; Zenzmaier C Gerontology; 2017; 63(3):216-227. PubMed ID: 27784018 [TBL] [Abstract][Full Text] [Related]
20. Re-engineering a neuroprotective, clinical drug as a procognitive agent with high in vivo potency and with GABAA potentiating activity for use in dementia. Luo J; Lee SH; VandeVrede L; Qin Z; Piyankarage S; Tavassoli E; Asghodom RT; Ben Aissa M; Fà M; Arancio O; Yue L; Pepperberg DR; Thatcher GR BMC Neurosci; 2015 Oct; 16():67. PubMed ID: 26480871 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]