BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 27776527)

  • 1. Real-time monitoring of the sugar sensing in Saccharomyces cerevisiae indicates endogenous mechanisms for xylose signaling.
    Brink DP; Borgström C; Tueros FG; Gorwa-Grauslund MF
    Microb Cell Fact; 2016 Oct; 15(1):183. PubMed ID: 27776527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the effect of d-xylose on the sugar signaling pathways of Saccharomyces cerevisiae in strains engineered for xylose transport and assimilation.
    Osiro KO; Brink DP; Borgström C; Wasserstrom L; Carlquist M; Gorwa-Grauslund MF
    FEMS Yeast Res; 2018 Feb; 18(1):. PubMed ID: 29315378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the xylose paradox in Saccharomyces cerevisiae through in vivo sugar signalomics of targeted deletants.
    Osiro KO; Borgström C; Brink DP; Fjölnisdóttir BL; Gorwa-Grauslund MF
    Microb Cell Fact; 2019 May; 18(1):88. PubMed ID: 31122246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effect of MIG1 and SNF1 deletion on simultaneous utilization of glucose and xylose by Saccharomyces cerevisiae].
    Cai Y; Qi X; Qi Q; Lin Y; Wang Z; Wang Q
    Sheng Wu Gong Cheng Xue Bao; 2018 Jan; 34(1):54-67. PubMed ID: 29380571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. D-Xylose Sensing in
    Brink DP; Borgström C; Persson VC; Ofuji Osiro K; Gorwa-Grauslund MF
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using phosphoglucose isomerase-deficient (pgi1Δ) Saccharomyces cerevisiae to map the impact of sugar phosphate levels on D-glucose and D-xylose sensing.
    Borgström C; Persson VC; Rogova O; Osiro KO; Lundberg E; Spégel P; Gorwa-Grauslund M
    Microb Cell Fact; 2022 Dec; 21(1):253. PubMed ID: 36456947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Xylose and some non-sugar carbon sources cause catabolite repression in Saccharomyces cerevisiae.
    Belinchón MM; Gancedo JM
    Arch Microbiol; 2003 Oct; 180(4):293-7. PubMed ID: 12955310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering of carbon catabolite repression in recombinant xylose fermenting Saccharomyces cerevisiae.
    Roca C; Haack MB; Olsson L
    Appl Microbiol Biotechnol; 2004 Feb; 63(5):578-83. PubMed ID: 12925863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selection of yeast Saccharomyces cerevisiae promoters available for xylose cultivation and fermentation.
    Nambu-Nishida Y; Sakihama Y; Ishii J; Hasunuma T; Kondo A
    J Biosci Bioeng; 2018 Jan; 125(1):76-86. PubMed ID: 28869192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization.
    Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B
    Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endogenous xylose pathway in Saccharomyces cerevisiae.
    Toivari MH; Salusjärvi L; Ruohonen L; Penttilä M
    Appl Environ Microbiol; 2004 Jun; 70(6):3681-6. PubMed ID: 15184173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolved hexose transporter enhances xylose uptake and glucose/xylose co-utilization in Saccharomyces cerevisiae.
    Reider Apel A; Ouellet M; Szmidt-Middleton H; Keasling JD; Mukhopadhyay A
    Sci Rep; 2016 Jan; 6():19512. PubMed ID: 26781725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deletion of D-ribulose-5-phosphate 3-epimerase (RPE1) induces simultaneous utilization of xylose and glucose in xylose-utilizing Saccharomyces cerevisiae.
    Shen MH; Song H; Li BZ; Yuan YJ
    Biotechnol Lett; 2015 May; 37(5):1031-6. PubMed ID: 25548118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crabtree-negative characteristics of recombinant xylose-utilizing Saccharomyces cerevisiae.
    Souto-Maior AM; Runquist D; Hahn-Hägerdal B
    J Biotechnol; 2009 Aug; 143(2):119-23. PubMed ID: 19560495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response.
    Jin YS; Laplaza JM; Jeffries TW
    Appl Environ Microbiol; 2004 Nov; 70(11):6816-25. PubMed ID: 15528549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Xylose-induced dynamic effects on metabolism and gene expression in engineered Saccharomyces cerevisiae in anaerobic glucose-xylose cultures.
    Alff-Tuomala S; Salusjärvi L; Barth D; Oja M; Penttilä M; Pitkänen JP; Ruohonen L; Jouhten P
    Appl Microbiol Biotechnol; 2016 Jan; 100(2):969-85. PubMed ID: 26454869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of xylose metabolism in recombinant Saccharomyces cerevisiae.
    Salusjärvi L; Kankainen M; Soliymani R; Pitkänen JP; Penttilä M; Ruohonen L
    Microb Cell Fact; 2008 Jun; 7():18. PubMed ID: 18533012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial XylRs and synthetic promoters function as genetically encoded xylose biosensors in Saccharomyces cerevisiae.
    Teo WS; Chang MW
    Biotechnol J; 2015 Feb; 10(2):315-22. PubMed ID: 24975936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved xylose uptake in Saccharomyces cerevisiae due to directed evolution of galactose permease Gal2 for sugar co-consumption.
    Reznicek O; Facey SJ; de Waal PP; Teunissen AW; de Bont JA; Nijland JG; Driessen AJ; Hauer B
    J Appl Microbiol; 2015 Jul; 119(1):99-111. PubMed ID: 25882005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption.
    Scalcinati G; Otero JM; Van Vleet JR; Jeffries TW; Olsson L; Nielsen J
    FEMS Yeast Res; 2012 Aug; 12(5):582-97. PubMed ID: 22487265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.