BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 27777262)

  • 21. A functionally conserved Zn
    Rybak K; See PT; Phan HT; Syme RA; Moffat CS; Oliver RP; Tan KC
    Mol Plant Pathol; 2017 Apr; 18(3):420-434. PubMed ID: 27860150
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetics of Variable Disease Expression Conferred by Inverse Gene-For-Gene Interactions in the Wheat-
    Peters Haugrud AR; Zhang Z; Richards JK; Friesen TL; Faris JD
    Plant Physiol; 2019 May; 180(1):420-434. PubMed ID: 30858234
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genetics of tan spot resistance in wheat.
    Faris JD; Liu Z; Xu SS
    Theor Appl Genet; 2013 Sep; 126(9):2197-217. PubMed ID: 23884599
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of novel tan spot resistance loci beyond the known host-selective toxin insensitivity genes in wheat.
    Chu CG; Friesen TL; Xu SS; Faris JD
    Theor Appl Genet; 2008 Oct; 117(6):873-81. PubMed ID: 18575834
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel sources of resistance to Septoria nodorum blotch in the Vavilov wheat collection identified by genome-wide association studies.
    Phan HTT; Rybak K; Bertazzoni S; Furuki E; Dinglasan E; Hickey LT; Oliver RP; Tan KC
    Theor Appl Genet; 2018 Jun; 131(6):1223-1238. PubMed ID: 29470621
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Heterologous expression and characterization of ToxA1 haplotype from India and its interaction with Tsn1 for spot blotch susceptibility in spring wheat.
    Chaubey RK; Thakur D; Navathe S; Sharma S; Mishra VK; Singh PK; Chand R
    Mol Biol Rep; 2023 Oct; 50(10):8213-8224. PubMed ID: 37561326
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mining and genomic characterization of resistance to tan spot, Stagonospora nodorum blotch (SNB), and Fusarium head blight in Watkins core collection of wheat landraces.
    Halder J; Zhang J; Ali S; Sidhu JS; Gill HS; Talukder SK; Kleinjan J; Turnipseed B; Sehgal SK
    BMC Plant Biol; 2019 Nov; 19(1):480. PubMed ID: 31703626
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Meta-QTL analysis of tan spot resistance in wheat.
    Liu Y; Salsman E; Wang R; Galagedara N; Zhang Q; Fiedler JD; Liu Z; Xu S; Faris JD; Li X
    Theor Appl Genet; 2020 Aug; 133(8):2363-2375. PubMed ID: 32436020
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genetic analysis of disease susceptibility contributed by the compatible Tsn1-SnToxA and Snn1-SnTox1 interactions in the wheat-Stagonospora nodorum pathosystem.
    Chu CG; Faris JD; Xu SS; Friesen TL
    Theor Appl Genet; 2010 May; 120(7):1451-9. PubMed ID: 20084492
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional redundancy of necrotrophic effectors - consequences for exploitation for breeding.
    Tan KC; Phan HT; Rybak K; John E; Chooi YH; Solomon PS; Oliver RP
    Front Plant Sci; 2015; 6():501. PubMed ID: 26217355
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Soft wheat cultivars grown in the Saratov region and their resistance to Septoria blotch.
    Zeleneva YV; Konkova EА
    Vavilovskii Zhurnal Genet Selektsii; 2023 Oct; 27(6):582-590. PubMed ID: 38213467
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A New
    See PT; Iagallo EM; Marathamuthu KA; Wood B; Aboukhaddour R; Moffat CS
    Phytopathology; 2024 Jun; ():PHYTO10230370R. PubMed ID: 38530294
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tsn1-mediated host responses to ToxA from Pyrenophora tritici-repentis.
    Adhikari TB; Bai J; Meinhardt SW; Gurung S; Myrfield M; Patel J; Ali S; Gudmestad NC; Rasmussen JB
    Mol Plant Microbe Interact; 2009 Sep; 22(9):1056-68. PubMed ID: 19656041
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genetic mapping using a wheat multi-founder population reveals a locus on chromosome 2A controlling resistance to both leaf and glume blotch caused by the necrotrophic fungal pathogen Parastagonospora nodorum.
    Lin M; Corsi B; Ficke A; Tan KC; Cockram J; Lillemo M
    Theor Appl Genet; 2020 Mar; 133(3):785-808. PubMed ID: 31996971
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Host-selective toxins of Pyrenophora tritici-repentis induce common responses associated with host susceptibility.
    Pandelova I; Figueroa M; Wilhelm LJ; Manning VA; Mankaney AN; Mockler TC; Ciuffetti LM
    PLoS One; 2012; 7(7):e40240. PubMed ID: 22792250
    [TBL] [Abstract][Full Text] [Related]  

  • 36.
    Hafez M; Gourlie R; Despins T; Turkington TK; Friesen TL; Aboukhaddour R
    Phytopathology; 2020 Dec; 110(12):1946-1958. PubMed ID: 32689900
    [No Abstract]   [Full Text] [Related]  

  • 37. Assessment of Indian wheat germplasm for Septoria nodorum blotch and tan spot reveals new QTLs conferring resistance along with recessive alleles of
    Navathe S; He X; Kamble U; Kumar M; Patial M; Singh G; Singh GP; Joshi AK; Singh PK
    Front Plant Sci; 2023; 14():1223959. PubMed ID: 37881616
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification and cross-validation of genetic loci conferring resistance to Septoria nodorum blotch using a German multi-founder winter wheat population.
    Lin M; Stadlmeier M; Mohler V; Tan KC; Ficke A; Cockram J; Lillemo M
    Theor Appl Genet; 2021 Jan; 134(1):125-142. PubMed ID: 33047219
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transcriptomic changes in wheat during tan spot (Pyrenophora tritici-repentis) disease.
    Andersen EJ; Ali S; Nepal MP
    BMC Res Notes; 2019 Aug; 12(1):471. PubMed ID: 31370903
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular-based race classification of
    Kato K; Ban Y; Yanaka M; Kitabayashi S; Sekiguchi H; Tomioka K; Ito M
    Breed Sci; 2023 Dec; 73(5):445-449. PubMed ID: 38737920
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.