BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 27777386)

  • 1. [Physiolgically-based pharmacokinetics:Theory and examples.].
    Ishimoto T; Kato Y
    Clin Calcium; 2016; 26(11):1529-1537. PubMed ID: 27777386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Practical review of pharmacology concepts.
    Janda SM; Fagan NL
    Urol Nurs; 2010; 30(1):15-20. PubMed ID: 20359141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In silico predictions of gastrointestinal drug absorption in pharmaceutical product development: application of the mechanistic absorption model GI-Sim.
    Sjögren E; Westergren J; Grant I; Hanisch G; Lindfors L; Lennernäs H; Abrahamsson B; Tannergren C
    Eur J Pharm Sci; 2013 Jul; 49(4):679-98. PubMed ID: 23727464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of physiologically based pharmacokinetic modeling for assessment of drug-drug interactions.
    Baneyx G; Fukushima Y; Parrott N
    Future Med Chem; 2012 Apr; 4(5):681-93. PubMed ID: 22458685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pharmacokinetic changes in critical illness.
    Boucher BA; Wood GC; Swanson JM
    Crit Care Clin; 2006 Apr; 22(2):255-71, vi. PubMed ID: 16677999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Commentary: theoretical predictions of flow effects on intestinal and systemic availability in physiologically based pharmacokinetic intestine models: the traditional model, segregated flow model, and QGut model.
    Pang KS; Chow EC
    Drug Metab Dispos; 2012 Oct; 40(10):1869-77. PubMed ID: 22745334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical significance of organic anion transporting polypeptides (OATPs) in drug disposition: their roles in hepatic clearance and intestinal absorption.
    Shitara Y; Maeda K; Ikejiri K; Yoshida K; Horie T; Sugiyama Y
    Biopharm Drug Dispos; 2013 Jan; 34(1):45-78. PubMed ID: 23115084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new physiologically based pharmacokinetic model for the prediction of gastrointestinal drug absorption: translocation model.
    Ando H; Hisaka A; Suzuki H
    Drug Metab Dispos; 2015 Apr; 43(4):590-602. PubMed ID: 25616403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [FOOD - DRUG INTERACTIONS: TYPES AND MECHANISMS.].
    Lemina EY; Churyukanov VV
    Eksp Klin Farmakol; 2016; 79(11):41-44. PubMed ID: 29791108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How drug-like are 'ugly' drugs: do drug-likeness metrics predict ADME behaviour in humans?
    Ritchie TJ; Macdonald SJ
    Drug Discov Today; 2014 Apr; 19(4):489-95. PubMed ID: 24462956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiologically based predictions of the impact of inhibition of intestinal and hepatic metabolism on human pharmacokinetics of CYP3A substrates.
    Fenneteau F; Poulin P; Nekka F
    J Pharm Sci; 2010 Jan; 99(1):486-514. PubMed ID: 19479982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating human drug oral absorption kinetics from Caco-2 permeability using an absorption-disposition model: model development and evaluation and derivation of analytical solutions for k(a) and F(a).
    Usansky HH; Sinko PJ
    J Pharmacol Exp Ther; 2005 Jul; 314(1):391-9. PubMed ID: 15833900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resurgence in the use of physiologically based pharmacokinetic models in pediatric clinical pharmacology: parallel shift in incorporating the knowledge of biological elements and increased applicability to drug development and clinical practice.
    Johnson TN; Rostami-Hodjegan A
    Paediatr Anaesth; 2011 Mar; 21(3):291-301. PubMed ID: 20497354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An update on computational oral absorption simulation.
    Dressman JB; Thelen K; Willmann S
    Expert Opin Drug Metab Toxicol; 2011 Nov; 7(11):1345-64. PubMed ID: 21939427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of pharmacokinetics in drug safety evaluation.
    Singhvi SM; Keim GR; Migdalof BH
    Regul Toxicol Pharmacol; 1985 Mar; 5(1):3-17. PubMed ID: 3991931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influencing Factors of the Pharmacokinetic Characters on Nanopharmaceutics.
    Ji X; Lu W; Wu K; Cho WC
    Pharm Nanotechnol; 2017; 5(1):24-31. PubMed ID: 28948908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PBPK models for the prediction of in vivo performance of oral dosage forms.
    Kostewicz ES; Aarons L; Bergstrand M; Bolger MB; Galetin A; Hatley O; Jamei M; Lloyd R; Pepin X; Rostami-Hodjegan A; Sjögren E; Tannergren C; Turner DB; Wagner C; Weitschies W; Dressman J
    Eur J Pharm Sci; 2014 Jun; 57():300-21. PubMed ID: 24060672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Basic principles of pharmacologic action.
    Schwertz DW
    Nurs Clin North Am; 1991 Jun; 26(2):245-62. PubMed ID: 2047284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of an integrated in vitro-in silico PBPK (physiologically based pharmacokinetic) model to provide estimates of human bioavailability.
    Cai H; Stoner C; Reddy A; Freiwald S; Smith D; Winters R; Stankovic C; Surendran N
    Int J Pharm; 2006 Feb; 308(1-2):133-9. PubMed ID: 16352407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of differential drug pharmacokinetics under heat and exercise stress using a physiologically based pharmacokinetic modeling approach.
    Sidhu P; Peng HT; Cheung B; Edginton A
    Can J Physiol Pharmacol; 2011 May; 89(5):365-82. PubMed ID: 21627485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.