These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
335 related articles for article (PubMed ID: 27777618)
1. Efficient hydrolysis of raw starch and ethanol fermentation: a novel raw starch-digesting glucoamylase from Xu QS; Yan YS; Feng JX Biotechnol Biofuels; 2016; 9():216. PubMed ID: 27777618 [TBL] [Abstract][Full Text] [Related]
2. Production of raw cassava starch-degrading enzyme by Penicillium and its use in conversion of raw cassava flour to ethanol. Lin HJ; Xian L; Zhang QJ; Luo XM; Xu QS; Yang Q; Duan CJ; Liu JL; Tang JL; Feng JX J Ind Microbiol Biotechnol; 2011 Jun; 38(6):733-42. PubMed ID: 21120680 [TBL] [Abstract][Full Text] [Related]
3. Enhanced production of raw starch degrading enzyme using agro-industrial waste mixtures by thermotolerant Rhizopus microsporus for raw cassava chip saccharification in ethanol production. Trakarnpaiboon S; Srisuk N; Piyachomkwan K; Sakai K; Kitpreechavanich V Prep Biochem Biotechnol; 2017 Sep; 47(8):813-823. PubMed ID: 28636431 [TBL] [Abstract][Full Text] [Related]
4. Direct fermentation of raw starch using a Kluyveromyces marxianus strain that expresses glucoamylase and alpha-amylase to produce ethanol. Wang R; Wang D; Gao X; Hong J Biotechnol Prog; 2014; 30(2):338-47. PubMed ID: 24478139 [TBL] [Abstract][Full Text] [Related]
5. Combination of genetic engineering and random mutagenesis for improving production of raw-starch-degrading enzymes in Penicillium oxalicum. Zhao S; Tan MZ; Wang RX; Ye FT; Chen YP; Luo XM; Feng JX Microb Cell Fact; 2022 Dec; 21(1):272. PubMed ID: 36566178 [TBL] [Abstract][Full Text] [Related]
6. AmyZ1: a novel α-amylase from marine bacterium Fang W; Xue S; Deng P; Zhang X; Wang X; Xiao Y; Fang Z Biotechnol Biofuels; 2019; 12():95. PubMed ID: 31044008 [TBL] [Abstract][Full Text] [Related]
7. ARTP/EMS-combined multiple mutagenesis efficiently improved production of raw starch-degrading enzymes in Penicillium oxalicum and characterization of the enzyme-hyperproducing mutant. Gu LS; Tan MZ; Li SH; Zhang T; Zhang QQ; Li CX; Luo XM; Feng JX; Zhao S Biotechnol Biofuels; 2020 Nov; 13(1):187. PubMed ID: 33292496 [TBL] [Abstract][Full Text] [Related]
8. Identification of an essential regulator controlling the production of raw-starch-digesting glucoamylase in Zhang MY; Zhao S; Ning YN; Fu LH; Li CX; Wang Q; You R; Wang CY; Xu HN; Luo XM; Feng JX Biotechnol Biofuels; 2019; 12():7. PubMed ID: 30622649 [TBL] [Abstract][Full Text] [Related]
9. Secretory overproduction of a raw starch-degrading glucoamylase in Penicillium oxalicum using strong promoter and signal peptide. Wang L; Zhao S; Chen XX; Deng QP; Li CX; Feng JX Appl Microbiol Biotechnol; 2018 Nov; 102(21):9291-9301. PubMed ID: 30155751 [TBL] [Abstract][Full Text] [Related]
10. Engineering Saccharomyces cerevisiae for direct conversion of raw, uncooked or granular starch to ethanol. Görgens JF; Bressler DC; van Rensburg E Crit Rev Biotechnol; 2015; 35(3):369-91. PubMed ID: 24666118 [TBL] [Abstract][Full Text] [Related]
11. Production of multiple extracellular enzyme activities by novel submerged culture of Aspergillus kawachii for ethanol production from raw cassava flour. Sugimoto T; Makita T; Watanabe K; Shoji H J Ind Microbiol Biotechnol; 2012 Apr; 39(4):605-12. PubMed ID: 22072435 [TBL] [Abstract][Full Text] [Related]
12. Mutual regulation of novel transcription factors RsrD and RsrE positively modulates the production of raw-starch-degrading enzyme in Guo H; Mo L-X; Luo X-M; Zhao S; Feng J-X Appl Environ Microbiol; 2024 Aug; 90(8):e0039024. PubMed ID: 39023351 [TBL] [Abstract][Full Text] [Related]
13. Single-step ethanol production from raw cassava starch using a combination of raw starch hydrolysis and fermentation, scale-up from 5-L laboratory and 200-L pilot plant to 3000-L industrial fermenters. Krajang M; Malairuang K; Sukna J; Rattanapradit K; Chamsart S Biotechnol Biofuels; 2021 Mar; 14(1):68. PubMed ID: 33726825 [TBL] [Abstract][Full Text] [Related]
14. Genome mining for new α-amylase and glucoamylase encoding sequences and high level expression of a glucoamylase from Talaromyces stipitatus for potential raw starch hydrolysis. Xiao Z; Wu M; Grosse S; Beauchemin M; Lévesque M; Lau PC Appl Biochem Biotechnol; 2014 Jan; 172(1):73-86. PubMed ID: 24046254 [TBL] [Abstract][Full Text] [Related]
15. Construction of industrial Cripwell RA; Rose SH; Favaro L; van Zyl WH Biotechnol Biofuels; 2019; 12():201. PubMed ID: 31452682 [TBL] [Abstract][Full Text] [Related]
16. A thermostable glucoamylase from Bispora sp. MEY-1 with stability over a broad pH range and significant starch hydrolysis capacity. Hua H; Luo H; Bai Y; Wang K; Niu C; Huang H; Shi P; Wang C; Yang P; Yao B PLoS One; 2014; 9(11):e113581. PubMed ID: 25415468 [TBL] [Abstract][Full Text] [Related]
17. Simultaneous non-thermal saccharification of cassava pulp by multi-enzyme activity and ethanol fermentation by Candida tropicalis. Rattanachomsri U; Tanapongpipat S; Eurwilaichitr L; Champreda V J Biosci Bioeng; 2009 May; 107(5):488-93. PubMed ID: 19393545 [TBL] [Abstract][Full Text] [Related]
18. Production of raw starch-degrading enzyme by Aspergillus sp. and its use in conversion of inedible wild cassava flour to bioethanol. Moshi AP; Hosea KM; Elisante E; Mamo G; Önnby L; Nges IA J Biosci Bioeng; 2016 Apr; 121(4):457-63. PubMed ID: 26481161 [TBL] [Abstract][Full Text] [Related]
19. Characterization of an organic solvent-tolerant thermostable glucoamylase from a halophilic isolate, Halolactibacillus sp. SK71 and its application in raw starch hydrolysis for bioethanol production. Yu HY; Li X Biotechnol Prog; 2014; 30(6):1262-8. PubMed ID: 25138675 [TBL] [Abstract][Full Text] [Related]
20. Repeated fermentation from raw starch using Saccharomyces cerevisiae displaying both glucoamylase and α-amylase. Yamakawa S; Yamada R; Tanaka T; Ogino C; Kondo A Enzyme Microb Technol; 2012 May; 50(6-7):343-7. PubMed ID: 22500903 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]