BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 27777627)

  • 1. FEDRR: fast, exhaustive detection of redundant hierarchical relations for quality improvement of large biomedical ontologies.
    Xing G; Zhang GQ; Cui L
    BioData Min; 2016; 9():31. PubMed ID: 27777627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. COHeRE: Cross-Ontology Hierarchical Relation Examination for Ontology Quality Assurance.
    Cui L
    AMIA Annu Symp Proc; 2015; 2015():456-65. PubMed ID: 26958178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An efficient, large-scale, non-lattice-detection algorithm for exhaustive structural auditing of biomedical ontologies.
    Zhang GQ; Xing G; Cui L
    J Biomed Inform; 2018 Apr; 80():106-119. PubMed ID: 29548711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A substring replacement approach for identifying missing IS-A relations in SNOMED CT.
    Hao X; Abeysinghe R; Shi J; Cui L
    Proceedings (IEEE Int Conf Bioinformatics Biomed); 2022 Dec; 2022():2611-2618. PubMed ID: 36776766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large-scale, Exhaustive Lattice-based Structural Auditing of SNOMED CT.
    Zhang GQ; Bodenreider O
    AMIA Annu Symp Proc; 2010 Nov; 2010():922-6. PubMed ID: 21347113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quality Assurance of UMLS Semantic Type Assignments Using SNOMED CT Hierarchies.
    Gu H; Chen Y; He Z; Halper M; Chen L
    Methods Inf Med; 2016; 55(2):158-65. PubMed ID: 25925776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mining non-lattice subgraphs for detecting missing hierarchical relations and concepts in SNOMED CT.
    Cui L; Zhu W; Tao S; Case JT; Bodenreider O; Zhang GQ
    J Am Med Inform Assoc; 2017 Jul; 24(4):788-798. PubMed ID: 28339775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using ontology-based semantic similarity to facilitate the article screening process for systematic reviews.
    Ji X; Ritter A; Yen PY
    J Biomed Inform; 2017 May; 69():33-42. PubMed ID: 28302519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From lexical regularities to axiomatic patterns for the quality assurance of biomedical terminologies and ontologies.
    van Damme P; Quesada-Martínez M; Cornet R; Fernández-Breis JT
    J Biomed Inform; 2018 Aug; 84():59-74. PubMed ID: 29908358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A method exploiting syntactic patterns and the UMLS semantics for aligning biomedical ontologies: the case of OBO disease ontologies.
    Marquet G; Mosser J; Burgun A
    Int J Med Inform; 2007 Dec; 76 Suppl 3():S353-61. PubMed ID: 17517532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An ontology network for Diabetes Mellitus in Mexico.
    Reyes-Peña C; Tovar M; Bravo M; Motz R
    J Biomed Semantics; 2021 Oct; 12(1):19. PubMed ID: 34625104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A lexical-based approach for exhaustive detection of missing hierarchical IS-A relations in SNOMED CT.
    Zheng F; Shi J; Cui L
    AMIA Annu Symp Proc; 2020; 2020():1392-1401. PubMed ID: 33936515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrating an Ontology of Radiology Differential Diagnosis with ICD-10-CM, RadLex, and SNOMED CT.
    Filice RW; Kahn CE
    J Digit Imaging; 2019 Apr; 32(2):206-210. PubMed ID: 30706210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing different knowledge sources for the automatic summarization of biomedical literature.
    Plaza L
    J Biomed Inform; 2014 Dec; 52():319-28. PubMed ID: 25066773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leveraging non-lattice subgraphs for suggestion of new concepts for SNOMED CT.
    Hao X; Abeysinghe R; Zheng F; Cui L
    Proceedings (IEEE Int Conf Bioinformatics Biomed); 2021 Dec; 2021():1805-1812. PubMed ID: 35291311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aligning biomedical ontologies using lexical methods and the UMLS: the case of disease ontologies.
    Marquet G; Mosser J; Burgun A
    Stud Health Technol Inform; 2006; 124():781-6. PubMed ID: 17108609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MaPLE: A MapReduce Pipeline for Lattice-based Evaluation and Its Application to SNOMED CT.
    Zhang GQ; Zhu W; Sun M; Tao S; Bodenreider O; Cui L
    Proc IEEE Int Conf Big Data; 2014 Oct; 2014():754-759. PubMed ID: 25705725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex overlapping concepts: An effective auditing methodology for families of similarly structured BioPortal ontologies.
    Zheng L; Chen Y; Elhanan G; Perl Y; Geller J; Ochs C
    J Biomed Inform; 2018 Jul; 83():135-149. PubMed ID: 29852316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated ontology generation framework powered by linked biomedical ontologies for disease-drug domain.
    Alobaidi M; Malik KM; Hussain M
    Comput Methods Programs Biomed; 2018 Oct; 165():117-128. PubMed ID: 30337066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating the granularity balance of hierarchical relationships within large biomedical terminologies towards quality improvement.
    Luo L; Tong L; Zhou X; Mejino JLV; Ouyang C; Liu Y
    J Biomed Inform; 2017 Nov; 75():129-137. PubMed ID: 28987379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.