BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 2777776)

  • 1. Resonance Raman spectroscopy of horseradish peroxidase derivatives and intermediates with excitation in the near ultraviolet.
    Palaniappan V; Terner J
    J Biol Chem; 1989 Sep; 264(27):16046-53. PubMed ID: 2777776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonance Raman spectroscopy of oxoiron(IV) porphyrin pi-cation radical and oxoiron(IV) hemes in peroxidase intermediates.
    Terner J; Palaniappan V; Gold A; Weiss R; Fitzgerald MM; Sullivan AM; Hosten CM
    J Inorg Biochem; 2006 Apr; 100(4):480-501. PubMed ID: 16513173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resonance Raman spectra of bovine liver catalase compound II. Similarity of the heme environment to horseradish peroxidase compound II.
    Chuang WJ; Heldt J; Van Wart HE
    J Biol Chem; 1989 Aug; 264(24):14209-15. PubMed ID: 2547789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resonance Raman spectroscopy of the catalytic intermediates and derivatives of chloroperoxidase from Caldariomyces fumago.
    Hosten CM; Sullivan AM; Palaniappan V; Fitzgerald MM; Terner J
    J Biol Chem; 1994 May; 269(19):13966-78. PubMed ID: 8188677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resonance Raman spectra of horseradish peroxidase and bovine liver catalase compound I species. Evidence for predominant 2A2u pi-cation radical ground state configurations.
    Chuang WJ; Van Wart HE
    J Biol Chem; 1992 Jul; 267(19):13293-301. PubMed ID: 1618830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-resolved and static resonance Raman spectroscopy of horseradish peroxidase intermediates.
    Oertling WA; Babcock GT
    Biochemistry; 1988 May; 27(9):3331-8. PubMed ID: 3390434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heme-linked ionizations in horseradish peroxidase detected by Raman difference spectroscopy.
    Shelnutt JA; Alden RG; Ondrias MR
    J Biol Chem; 1986 Feb; 261(4):1720-3. PubMed ID: 3944105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resonance Raman investigations of chloroperoxidase, horseradish peroxidase, and cytochrome c using Soret band laser excitation.
    Remba RD; Champion PM; Fitchen DB; Chiang R; Hager LP
    Biochemistry; 1979 May; 18(11):2280-90. PubMed ID: 36129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heme-linked ionization of horseradish peroxidase compound II monitored by the resonance Raman Fe(IV)=O stretching vibration.
    Sitter AJ; Reczek CM; Terner J
    J Biol Chem; 1985 Jun; 260(12):7515-22. PubMed ID: 3997887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the heme structures of horseradish peroxidase compounds X and II by resonance Raman spectroscopy.
    Sitter AJ; Reczek CM; Terner J
    J Biol Chem; 1986 Jul; 261(19):8638-42. PubMed ID: 3722164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanosecond transient resonance Raman spectra of the FeII-CO and FeIII-NO photolysis products of horseradish peroxidase.
    Smulevich G; Spiro TG
    Biochim Biophys Acta; 1985 Jul; 830(1):80-5. PubMed ID: 4016131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron-nuclear double resonance of horseradish peroxidase compound I. Detection of the porphyrin pi-cation radical.
    Roberts JE; Hoffman BM; Rutter R; Hager LP
    J Biol Chem; 1981 Mar; 256(5):2118-21. PubMed ID: 6257699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical nature of the porphyrin pi cation radical in horseradish peroxidase compound I.
    Rutter R; Valentine M; Hendrich MP; Hager LP; Debrunner PG
    Biochemistry; 1983 Sep; 22(20):4769-74. PubMed ID: 6313048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transient resonance Raman spectroscopy shows unrelaxed heme following CO photodissociation from cytochrome-c peroxidase.
    Smulevich G; Dasgupta S; English A; Spiro TG
    Biochim Biophys Acta; 1986 Sep; 873(1):88-91. PubMed ID: 3017436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser Raman spectra of oxidized hydroperoxidases.
    Felton RH; Romans AY; Yu NT; Schonbaum GR
    Biochim Biophys Acta; 1976 May; 434(1):82-9. PubMed ID: 945750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resonance Raman spectra of native and mesoheme-reconstituted horseradish peroxidase and their catalytic intermediates.
    Kincaid JR; Zheng Y; Al-Mustafa J; Czarnecki K
    J Biol Chem; 1996 Nov; 271(46):28805-11. PubMed ID: 8910524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of a thiolate axial ligand on the pi-->pi* electronic states of oxoferryl porphyrins: a study of the optical and resonance Raman spectra of compounds I and II of chloroperoxidase.
    Egawa T; Proshlyakov DA; Miki H; Makino R; Ogura T; Kitagawa T; Ishimura Y
    J Biol Inorg Chem; 2001 Jan; 6(1):46-54. PubMed ID: 11191222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of recombinant horseradish peroxidase C and three site-directed mutants, F41V, F41W, and R38K, by resonance Raman spectroscopy.
    Smulevich G; Paoli M; Burke JF; Sanders SA; Thorneley RN; Smith AT
    Biochemistry; 1994 Jun; 33(23):7398-407. PubMed ID: 8003505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resonance Raman studies on the ligand-iron interactions in hemoproteins and metallo-porphyrins.
    Kitagawa T; Ozaki Y; Kyogoku Y
    Adv Biophys; 1978; 11():153-96. PubMed ID: 27953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heme-linked ionizations of myeloperoxidase detected by Raman difference spectroscopy. A comparison with plant and yeast peroxidases.
    Stump RF; Deanin GG; Oliver JM; Shelnutt JA
    Biophys J; 1987 Apr; 51(4):605-10. PubMed ID: 3034344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.