These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

465 related articles for article (PubMed ID: 27778090)

  • 21. Nonenhancing peritumoral hyperintense lesion on diffusion-weighted imaging in glioblastoma: a novel diagnostic and specific prognostic indicator.
    Kolakshyapati M; Adhikari RB; Karlowee V; Takayasu T; Nosaka R; Amatya VJ; Takeshima Y; Akiyama Y; Sugiyama K; Kurisu K; Yamasaki F
    J Neurosurg; 2018 Mar; 128(3):667-678. PubMed ID: 28362236
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Machine learning-based radiomic, clinical and semantic feature analysis for predicting overall survival and MGMT promoter methylation status in patients with glioblastoma.
    Lu Y; Patel M; Natarajan K; Ughratdar I; Sanghera P; Jena R; Watts C; Sawlani V
    Magn Reson Imaging; 2020 Dec; 74():161-170. PubMed ID: 32980505
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Radiomic Analysis Reveals Prognostic Information in T1-Weighted Baseline Magnetic Resonance Imaging in Patients With Glioblastoma.
    Ingrisch M; Schneider MJ; Nörenberg D; Negrao de Figueiredo G; Maier-Hein K; Suchorska B; Schüller U; Albert N; Brückmann H; Reiser M; Tonn JC; Ertl-Wagner B
    Invest Radiol; 2017 Jun; 52(6):360-366. PubMed ID: 28079702
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reproducibility analysis of multi-institutional paired expert annotations and radiomic features of the Ivy Glioblastoma Atlas Project (Ivy GAP) dataset.
    Pati S; Verma R; Akbari H; Bilello M; Hill VB; Sako C; Correa R; Beig N; Venet L; Thakur S; Serai P; Ha SM; Blake GD; Shinohara RT; Tiwari P; Bakas S
    Med Phys; 2020 Dec; 47(12):6039-6052. PubMed ID: 33118182
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Radiomics signature for temporal evolution and recurrence patterns of glioblastoma using multimodal magnetic resonance imaging.
    Chougule T; Gupta RK; Saini J; Agrawal S; Gupta M; Vakharia N; Singh A; Patir R; Vaishya S; Ingalhalikar M
    NMR Biomed; 2022 Mar; 35(3):e4647. PubMed ID: 34766380
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identifying spatial imaging biomarkers of glioblastoma multiforme for survival group prediction.
    Zhou M; Chaudhury B; Hall LO; Goldgof DB; Gillies RJ; Gatenby RA
    J Magn Reson Imaging; 2017 Jul; 46(1):115-123. PubMed ID: 27678245
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Relationship between Glioblastoma Heterogeneity and Survival Time: An MR Imaging Texture Analysis.
    Liu Y; Xu X; Yin L; Zhang X; Li L; Lu H
    AJNR Am J Neuroradiol; 2017 Sep; 38(9):1695-1701. PubMed ID: 28663266
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differentiation between pilocytic astrocytoma and glioblastoma: a decision tree model using contrast-enhanced magnetic resonance imaging-derived quantitative radiomic features.
    Dong F; Li Q; Xu D; Xiu W; Zeng Q; Zhu X; Xu F; Jiang B; Zhang M
    Eur Radiol; 2019 Aug; 29(8):3968-3975. PubMed ID: 30421019
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tumor Habitat-derived Radiomic Features at Pretreatment MRI That Are Prognostic for Progression-free Survival in Glioblastoma Are Associated with Key Morphologic Attributes at Histopathologic Examination: A Feasibility Study.
    Verma R; Correa R; Hill VB; Statsevych V; Bera K; Beig N; Mahammedi A; Madabhushi A; Ahluwalia M; Tiwari P
    Radiol Artif Intell; 2020 Nov; 2(6):e190168. PubMed ID: 33330847
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Radiomics for glioblastoma survival analysis in pre-operative MRI: exploring feature robustness, class boundaries, and machine learning techniques.
    Suter Y; Knecht U; Alão M; Valenzuela W; Hewer E; Schucht P; Wiest R; Reyes M
    Cancer Imaging; 2020 Aug; 20(1):55. PubMed ID: 32758279
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Radiomics features to distinguish glioblastoma from primary central nervous system lymphoma on multi-parametric MRI.
    Kim Y; Cho HH; Kim ST; Park H; Nam D; Kong DS
    Neuroradiology; 2018 Dec; 60(12):1297-1305. PubMed ID: 30232517
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Machine learning-based radiomic evaluation of treatment response prediction in glioblastoma.
    Patel M; Zhan J; Natarajan K; Flintham R; Davies N; Sanghera P; Grist J; Duddalwar V; Peet A; Sawlani V
    Clin Radiol; 2021 Aug; 76(8):628.e17-628.e27. PubMed ID: 33941364
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predicting Glioblastoma Recurrence by Early Changes in the Apparent Diffusion Coefficient Value and Signal Intensity on FLAIR Images.
    Chang PD; Chow DS; Yang PH; Filippi CG; Lignelli A
    AJR Am J Roentgenol; 2017 Jan; 208(1):57-65. PubMed ID: 27726412
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Erratum to: Radiomic features from the peritumoral brain parenchyma on treatment-naïve multi-parametric MR imaging predict long versus short-term survival in glioblastoma multiforme: Preliminary findings.
    Prasanna P; Patel J; Partovi S; Madabhushi A; Tiwari P
    Eur Radiol; 2017 Oct; 27(10):4198-4199. PubMed ID: 28608160
    [No Abstract]   [Full Text] [Related]  

  • 35. A Coclinical Radiogenomic Validation Study: Conserved Magnetic Resonance Radiomic Appearance of Periostin-Expressing Glioblastoma in Patients and Xenograft Models.
    Zinn PO; Singh SK; Kotrotsou A; Hassan I; Thomas G; Luedi MM; Elakkad A; Elshafeey N; Idris T; Mosley J; Gumin J; Fuller GN; de Groot JF; Baladandayuthapani V; Sulman EP; Kumar AJ; Sawaya R; Lang FF; Piwnica-Worms D; Colen RR
    Clin Cancer Res; 2018 Dec; 24(24):6288-6299. PubMed ID: 30054278
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Radiomic Profiling of Glioblastoma: Identifying an Imaging Predictor of Patient Survival with Improved Performance over Established Clinical and Radiologic Risk Models.
    Kickingereder P; Burth S; Wick A; Götz M; Eidel O; Schlemmer HP; Maier-Hein KH; Wick W; Bendszus M; Radbruch A; Bonekamp D
    Radiology; 2016 Sep; 280(3):880-9. PubMed ID: 27326665
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differentiation of supratentorial single brain metastasis and glioblastoma by using peri-enhancing oedema region-derived radiomic features and multiple classifiers.
    Dong F; Li Q; Jiang B; Zhu X; Zeng Q; Huang P; Chen S; Zhang M
    Eur Radiol; 2020 May; 30(5):3015-3022. PubMed ID: 32006166
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impact of image preprocessing on the scanner dependence of multi-parametric MRI radiomic features and covariate shift in multi-institutional glioblastoma datasets.
    Um H; Tixier F; Bermudez D; Deasy JO; Young RJ; Veeraraghavan H
    Phys Med Biol; 2019 Aug; 64(16):165011. PubMed ID: 31272093
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A predictive model for distinguishing radiation necrosis from tumour progression after gamma knife radiosurgery based on radiomic features from MR images.
    Zhang Z; Yang J; Ho A; Jiang W; Logan J; Wang X; Brown PD; McGovern SL; Guha-Thakurta N; Ferguson SD; Fave X; Zhang L; Mackin D; Court LE; Li J
    Eur Radiol; 2018 Jun; 28(6):2255-2263. PubMed ID: 29178031
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of tumor-derived MRI-texture features for discrimination of molecular subtypes and prediction of 12-month survival status in glioblastoma.
    Yang D; Rao G; Martinez J; Veeraraghavan A; Rao A
    Med Phys; 2015 Nov; 42(11):6725-35. PubMed ID: 26520762
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.