These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
419 related articles for article (PubMed ID: 27778102)
1. Genomic skimming for identification of medium/highly abundant transposable elements in Arundo donax and Arundo plinii. Lwin AK; Bertolini E; Pè ME; Zuccolo A Mol Genet Genomics; 2017 Feb; 292(1):157-171. PubMed ID: 27778102 [TBL] [Abstract][Full Text] [Related]
2. Identification and characterization of abundant repetitive sequences in Eragrostis tef cv. Enatite genome. Gebre YG; Bertolini E; Pè ME; Zuccolo A BMC Plant Biol; 2016 Feb; 16():39. PubMed ID: 26833063 [TBL] [Abstract][Full Text] [Related]
3. Updating of transposable element annotations from large wheat genomic sequences reveals diverse activities and gene associations. Sabot F; Guyot R; Wicker T; Chantret N; Laubin B; Chalhoub B; Leroy P; Sourdille P; Bernard M Mol Genet Genomics; 2005 Sep; 274(2):119-30. PubMed ID: 16034625 [TBL] [Abstract][Full Text] [Related]
4. Interspecific and intraspecific phenotypic diversity for drought adaptation in bioenergy Faralli M; Williams K; Corke F; Li M; Doonan JH; Varotto C Glob Change Biol Bioenergy; 2021 Apr; 13(4):753-769. PubMed ID: 33777185 [TBL] [Abstract][Full Text] [Related]
5. Exploring the Evolutionary History and Phylogenetic Relationships of Giant Reed ( Luo L; Qu Q; Lin H; Chen J; Lin Z; Shao E; Lin D Int J Mol Sci; 2024 Jul; 25(14):. PubMed ID: 39063178 [TBL] [Abstract][Full Text] [Related]
6. Identification, characterization and distribution of transposable elements in the flax (Linum usitatissimum L.) genome. González LG; Deyholos MK BMC Genomics; 2012 Nov; 13():644. PubMed ID: 23171245 [TBL] [Abstract][Full Text] [Related]
7. Transposon fingerprinting using low coverage whole genome shotgun sequencing in cacao (Theobroma cacao L.) and related species. Sveinsson S; Gill N; Kane NC; Cronk Q BMC Genomics; 2013 Jul; 14():502. PubMed ID: 23883295 [TBL] [Abstract][Full Text] [Related]
8. A whole-genome snapshot of 454 sequences exposes the composition of the barley genome and provides evidence for parallel evolution of genome size in wheat and barley. Wicker T; Taudien S; Houben A; Keller B; Graner A; Platzer M; Stein N Plant J; 2009 Sep; 59(5):712-22. PubMed ID: 19453446 [TBL] [Abstract][Full Text] [Related]
10. Recent and dynamic transposable elements contribute to genomic divergence under asexuality. Ferreira de Carvalho J; de Jager V; van Gurp TP; Wagemaker NC; Verhoeven KJ BMC Genomics; 2016 Nov; 17(1):884. PubMed ID: 27821059 [TBL] [Abstract][Full Text] [Related]
11. Comparative analysis of genome composition in Triticeae reveals strong variation in transposable element dynamics and nucleotide diversity. Middleton CP; Stein N; Keller B; Kilian B; Wicker T Plant J; 2013 Jan; 73(2):347-56. PubMed ID: 23057663 [TBL] [Abstract][Full Text] [Related]
12. The nature and genomic landscape of repetitive DNA classes in Chrysanthemum nankingense shows recent genomic changes. Zhang F; Chen F; Schwarzacher T; Heslop-Harrison JS; Teng N Ann Bot; 2023 Feb; 131(1):215-228. PubMed ID: 35639931 [TBL] [Abstract][Full Text] [Related]
13. A new method to compute K-mer frequencies and its application to annotate large repetitive plant genomes. Kurtz S; Narechania A; Stein JC; Ware D BMC Genomics; 2008 Oct; 9():517. PubMed ID: 18976482 [TBL] [Abstract][Full Text] [Related]
14. Origin of the invasive Arundo donax (Poaceae): a trans-Asian expedition in herbaria. Hardion L; Verlaque R; Saltonstall K; Leriche A; Vila B Ann Bot; 2014 Sep; 114(3):455-62. PubMed ID: 25081517 [TBL] [Abstract][Full Text] [Related]
15. Identification of transposable elements fused in the exonic region of the olive flounder genome. Nam GH; Gim JA; Mishra A; Ahn K; Kim S; Kim DH; Cha HJ; Choi YH; Park CI; Kim HS Genes Genomics; 2018 Jul; 40(7):707-713. PubMed ID: 29934806 [TBL] [Abstract][Full Text] [Related]
16. Evaluating the potential use of Cu-contaminated soils for giant reed (Arundo donax, L.) cultivation as a biomass crop. Coppa E; Astolfi S; Beni C; Carnevale M; Colarossi D; Gallucci F; Santangelo E Environ Sci Pollut Res Int; 2020 Mar; 27(8):8662-8672. PubMed ID: 31907812 [TBL] [Abstract][Full Text] [Related]
17. Arundo donax L., a candidate for phytomanaging water and soils contaminated by trace elements and producing plant-based feedstock. A review. Nsanganwimana F; Marchand L; Douay F; Mench M Int J Phytoremediation; 2014; 16(7-12):982-1017. PubMed ID: 24933898 [TBL] [Abstract][Full Text] [Related]
18. Analysis of transposable elements in the genome of Asparagus officinalis from high coverage sequence data. Li SF; Gao WJ; Zhao XP; Dong TY; Deng CL; Lu LD PLoS One; 2014; 9(5):e97189. PubMed ID: 24810432 [TBL] [Abstract][Full Text] [Related]
19. Evolutionary dynamics of retrotransposons assessed by high-throughput sequencing in wild relatives of wheat. Senerchia N; Wicker T; Felber F; Parisod C Genome Biol Evol; 2013; 5(5):1010-20. PubMed ID: 23595021 [TBL] [Abstract][Full Text] [Related]
20. Detection of active transposable elements in Arabidopsis thaliana using Oxford Nanopore Sequencing technology. Debladis E; Llauro C; Carpentier MC; Mirouze M; Panaud O BMC Genomics; 2017 Jul; 18(1):537. PubMed ID: 28715998 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]