These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 27778110)

  • 1. Surface proteome mining for identification of potential vaccine candidates against Campylobacter jejuni: an in silico approach.
    Mehla K; Ramana J
    Funct Integr Genomics; 2017 Jan; 17(1):27-37. PubMed ID: 27778110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of epitope-based peptide vaccine candidates against enterotoxigenic Escherichia coli: a comparative genomics and immunoinformatics approach.
    Mehla K; Ramana J
    Mol Biosyst; 2016 Mar; 12(3):890-901. PubMed ID: 26766131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-Wide Prediction of Potential Vaccine Candidates for Campylobacter jejuni Using Reverse Vaccinology.
    Jain R; Singh S; Verma SK; Jain A
    Interdiscip Sci; 2019 Sep; 11(3):337-347. PubMed ID: 29128919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designing an efficient multi-epitope vaccine against Campylobacter jejuni using immunoinformatics and reverse vaccinology approach.
    Gupta N; Kumar A
    Microb Pathog; 2020 Oct; 147():104398. PubMed ID: 32771659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico prediction and expression analysis of vaccine candidate genes of Campylobacter jejuni.
    Poudel S; Jia L; Arick MA; Hsu CY; Thrash A; Sukumaran AT; Adhikari P; Kiess AS; Zhang L
    Poult Sci; 2023 May; 102(5):102592. PubMed ID: 36972674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EpitoCore: Mining Conserved Epitope Vaccine Candidates in the Core Proteome of Multiple Bacteria Strains.
    Fiuza TS; Lima JPMS; de Souza GA
    Front Immunol; 2020; 11():816. PubMed ID: 32431712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In silico analysis of epitope-based CadF vaccine design against Campylobacter jejuni.
    Moballegh Naseri M; Shams S; Moballegh Naseri M; Bakhshi B
    BMC Res Notes; 2020 Nov; 13(1):518. PubMed ID: 33168057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mining the Mycobacterium tuberculosis proteome for identification of potential T-cell epitope based vaccine candidates.
    Madan R; Pandit K; Bhati L; Kumar H; Kumari N; Singh S
    Microb Pathog; 2021 Aug; 157():104996. PubMed ID: 34044044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Novel Vaccine Candidates against Campylobacter through Reverse Vaccinology.
    Meunier M; Guyard-Nicodème M; Hirchaud E; Parra A; Chemaly M; Dory D
    J Immunol Res; 2016; 2016():5715790. PubMed ID: 27413761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A proteome-wide screen of Campylobacter jejuni using protein microarrays identifies novel and conformational antigens.
    Liu J; Parrish JR; Hines J; Mansfield L; Finley RL
    PLoS One; 2019; 14(1):e0210351. PubMed ID: 30633767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico proposition to predict cluster of B- and T-cell epitopes for the usefulness of vaccine design from invasive, virulent and membrane associated proteins of C. jejuni.
    Yasmin T; Akter S; Debnath M; Ebihara A; Nakagawa T; Nabi AH
    In Silico Pharmacol; 2016 Dec; 4(1):5. PubMed ID: 27376537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of CTL epitope, in silico modeling and functional analysis of cytolethal distending toxin (CDT) protein of Campylobacter jejuni.
    Ingale AG; Goto S
    BMC Res Notes; 2014 Feb; 7():92. PubMed ID: 24552167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mining the Leishmania genome for novel antigens and vaccine candidates.
    Herrera-Najera C; Piña-Aguilar R; Xacur-Garcia F; Ramirez-Sierra MJ; Dumonteil E
    Proteomics; 2009 Mar; 9(5):1293-301. PubMed ID: 19206109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The immunobiology of Campylobacter jejuni: Innate immunity and autoimmune diseases.
    Phongsisay V
    Immunobiology; 2016 Apr; 221(4):535-43. PubMed ID: 26709064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Use of Reverse Vaccinology and Molecular Modeling Associated with Cell Proliferation Stimulation Approach to Select Promiscuous Epitopes from Schistosoma mansoni.
    Oliveira FM; Coelho IE; Lopes MD; Taranto AG; Junior MC; Santos LL; Villar JA; Fonseca CT; Lopes DD
    Appl Biochem Biotechnol; 2016 Jul; 179(6):1023-40. PubMed ID: 26979443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Update on human Campylobacter jejuni infections.
    Kirkpatrick BD; Tribble DR
    Curr Opin Gastroenterol; 2011 Jan; 27(1):1-7. PubMed ID: 21124212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward a chimeric vaccine against multiple isolates of Mycobacteroides - An integrative approach.
    Satyam R; Bhardwaj T; Jha NK; Jha SK; Nand P
    Life Sci; 2020 Jun; 250():117541. PubMed ID: 32169520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. VacSol: a high throughput in silico pipeline to predict potential therapeutic targets in prokaryotic pathogens using subtractive reverse vaccinology.
    Rizwan M; Naz A; Ahmad J; Naz K; Obaid A; Parveen T; Ahsan M; Ali A
    BMC Bioinformatics; 2017 Feb; 18(1):106. PubMed ID: 28193166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Status of vaccine research and development for Campylobacter jejuni.
    Riddle MS; Guerry P
    Vaccine; 2016 Jun; 34(26):2903-2906. PubMed ID: 26973064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An overview of
    Kardani K; Bolhassani A; Namvar A
    Expert Rev Vaccines; 2020 Aug; 19(8):699-726. PubMed ID: 32648830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.