These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 2777817)

  • 1. Biomechanical analyses of surgical correction techniques in idiopathic scoliosis: significance of bi-planar characteristics of scoliotic spines.
    Jayaraman G; Zbib HM; Jacobs RR
    J Biomech; 1989; 22(5):427-37. PubMed ID: 2777817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinematics of the scoliotic spine as related to the normal spine.
    Veldhuizen AG; Scholten PJ
    Spine (Phila Pa 1976); 1987 Nov; 12(9):852-8. PubMed ID: 3441831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical analysis of vertebral derotation techniques for the surgical correction of thoracic scoliosis. A numerical study through case simulations and a sensitivity analysis.
    Martino J; Aubin CE; Labelle H; Wang X; Parent S
    Spine (Phila Pa 1976); 2013 Jan; 38(2):E73-83. PubMed ID: 23124259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical analysis and simulation of scoliosis surgical correction.
    Viviani GR; Ghista DN; Lozada PJ; Subbaraj K; Barnes G
    Clin Orthop Relat Res; 1986 Jul; (208):40-7. PubMed ID: 3720137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The results of anterior fusion and Cotrel-Dubousset-Hopf instrumentation in idiopathic scoliosis.
    Benli IT; Akalin S; Kis M; Citak M; Kurtulus B; Duman E
    Eur Spine J; 2000 Dec; 9(6):505-15. PubMed ID: 11189919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship of forces acting on implant rods and degree of scoliosis correction.
    Salmingo RA; Tadano S; Fujisaki K; Abe Y; Ito M
    Clin Biomech (Bristol, Avon); 2013 Feb; 28(2):122-8. PubMed ID: 23273729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patient-specific mechanical properties of a flexible multi-body model of the scoliotic spine.
    Petit Y; Aubin CE; Labelle H
    Med Biol Eng Comput; 2004 Jan; 42(1):55-60. PubMed ID: 14977223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional simulation of Harrington distraction instrumentation for surgical correction of scoliosis.
    Stokes IA; Gardner-Morse M
    Spine (Phila Pa 1976); 1993 Dec; 18(16):2457-64. PubMed ID: 8303449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical simulations of scoliotic spinal deformity and correction.
    Noone G; Mazumdar J; Kothiyal KP; Ghista DN; Subbaraj K; Viviani GR
    Australas Phys Eng Sci Med; 1993 Jun; 16(2):63-74. PubMed ID: 8357305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rotations of a helix as a model for correction of the scoliotic spine.
    Tredwell SJ; Sawatzky BJ; Hughes BL
    Spine (Phila Pa 1976); 1999 Jun; 24(12):1223-7. PubMed ID: 10382249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Simulation of lateral bending tests using a musculoskeletal model of the trunk].
    Beauséjour M; Aubin CE; Feldman AG; Labelle H
    Ann Chir; 1999; 53(8):742-50. PubMed ID: 10584386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of segmental spinal instrumentation devices in the correction of scoliosis.
    Ogilvie JW; Millar EA
    Spine (Phila Pa 1976); 1983; 8(4):416-9. PubMed ID: 6635791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Harrington and Cotrel-Dubousset instrumentation in adolescent idiopathic scoliosis. Long-term functional and radiographic outcomes.
    Helenius I; Remes V; Yrjönen T; Ylikoski M; Schlenzka D; Helenius M; Poussa M
    J Bone Joint Surg Am; 2003 Dec; 85(12):2303-9. PubMed ID: 14668498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Correlation study between spinal curvatures and vertebral and disk deformities in idiopathic scoliosis].
    Villemure I; Aubin CE; Dansereau J; Petit Y; Labelle H
    Ann Chir; 1999; 53(8):798-807. PubMed ID: 10584392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Biomechanics of scoliosis].
    Nowakowski A
    Chir Narzadow Ruchu Ortop Pol; 2004; 69(5):341-7. PubMed ID: 15751726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of progressive deformities in adolescent idiopathic scoliosis using a biomechanical model integrating vertebral growth modulation.
    Villemure I; Aubin CE; Dansereau J; Labelle H
    J Biomech Eng; 2002 Dec; 124(6):784-90. PubMed ID: 12596648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preclinical testing of a wedge-rod system for fusionless correction of scoliosis.
    Betz RR; Cunningham B; Selgrath C; Drewry T; Sherman MC
    Spine (Phila Pa 1976); 2003 Oct; 28(20):S275-8. PubMed ID: 14560203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frontal and sagittal balance analysis of late onset idiopathic scoliosis treated with third generation instrumentation.
    Benli IT; Akalin S; Kiş M; Citak M; Aydin E; Duman E
    Kobe J Med Sci; 2001 Dec; 47(6):231-53. PubMed ID: 11870334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical simulations of the spine deformation process in adolescent idiopathic scoliosis from different pathogenesis hypotheses.
    Villemure I; Aubin CE; Dansereau J; Labelle H
    Eur Spine J; 2004 Feb; 13(1):83-90. PubMed ID: 14730437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correction Capability in the 3 Anatomic Planes of Different Pedicle Screw Designs in Scoliosis Instrumentation.
    Wang X; Aubin CE; Coleman J; Rawlinson J
    Clin Spine Surg; 2017 May; 30(4):E323-E330. PubMed ID: 28437333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.