BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 27778232)

  • 1. A Computational Systems Biology Approach for Identifying Candidate Drugs for Repositioning for Cardiovascular Disease.
    Yu AZ; Ramsey SA
    Interdiscip Sci; 2018 Jun; 10(2):449-454. PubMed ID: 27778232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistically controlled identification of differentially expressed genes in one-to-one cell line comparisons of the CMAP database for drug repositioning.
    He J; Yan H; Cai H; Li X; Guan Q; Zheng W; Chen R; Liu H; Song K; Guo Z; Wang X
    J Transl Med; 2017 Sep; 15(1):198. PubMed ID: 28962576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drug Repositioning for Cancer Therapy Based on Large-Scale Drug-Induced Transcriptional Signatures.
    Lee H; Kang S; Kim W
    PLoS One; 2016; 11(3):e0150460. PubMed ID: 26954019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scoring functions for drug-effect similarity.
    Struckmann S; Ernst M; Fischer S; Mah N; Fuellen G; Möller S
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32484516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico drug repositioning based on integrated drug targets and canonical correlation analysis.
    Chen H; Zhang Z; Zhang J
    BMC Med Genomics; 2022 Mar; 15(1):48. PubMed ID: 35249529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drug repositioning using drug-disease vectors based on an integrated network.
    Lee T; Yoon Y
    BMC Bioinformatics; 2018 Nov; 19(1):446. PubMed ID: 30463505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MD-Miner: a network-based approach for personalized drug repositioning.
    Wu H; Miller E; Wijegunawardana D; Regan K; Payne PRO; Li F
    BMC Syst Biol; 2017 Oct; 11(Suppl 5):86. PubMed ID: 28984195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repositioning drugs by targeting network modules: a Parkinson's disease case study.
    Yue Z; Arora I; Zhang EY; Laufer V; Bridges SL; Chen JY
    BMC Bioinformatics; 2017 Dec; 18(Suppl 14):532. PubMed ID: 29297292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of host transcriptome-guided repurposable drugs for SARS-CoV-1 infections and their validation with SARS-CoV-2 infections by using the integrated bioinformatics approaches.
    Ahmed FF; Reza MS; Sarker MS; Islam MS; Mosharaf MP; Hasan S; Mollah MNH
    PLoS One; 2022; 17(4):e0266124. PubMed ID: 35390032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drug repositioning for orphan genetic diseases through Conserved Anticoexpressed Gene Clusters (CAGCs).
    Molineris I; Ala U; Provero P; Di Cunto F
    BMC Bioinformatics; 2013 Oct; 14():288. PubMed ID: 24088245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene expression analysis in clear cell renal cell carcinoma using gene set enrichment analysis for biostatistical management.
    Maruschke M; Reuter D; Koczan D; Hakenberg OW; Thiesen HJ
    BJU Int; 2011 Jul; 108(2 Pt 2):E29-35. PubMed ID: 21435154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drug repositioning in head and neck squamous cell carcinoma: An integrated pathway analysis based on connectivity map and differential gene expression.
    Wei GG; Gao L; Tang ZY; Lin P; Liang LB; Zeng JJ; Chen G; Zhang LC
    Pathol Res Pract; 2019 Jun; 215(6):152378. PubMed ID: 30871913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrating LINCS Data to Evaluate Cancer Transcriptome Modifying Potential of Small-molecule Compounds for Drug Repositioning.
    Zhao Y; Liu Y; Bai H
    Comb Chem High Throughput Screen; 2021; 24(9):1340-1350. PubMed ID: 33109034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DSigDB: drug signatures database for gene set analysis.
    Yoo M; Shin J; Kim J; Ryall KA; Lee K; Lee S; Jeon M; Kang J; Tan AC
    Bioinformatics; 2015 Sep; 31(18):3069-71. PubMed ID: 25990557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drug mechanism enrichment analysis improves prioritization of therapeutics for repurposing.
    Garana BB; Joly JH; Delfarah A; Hong H; Graham NA
    BMC Bioinformatics; 2023 May; 24(1):215. PubMed ID: 37226094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immune cells transcriptome-based drug repositioning for multiple sclerosis.
    Yin X; Rang X; Hong X; Zhou Y; Xu C; Fu J
    Front Immunol; 2022; 13():1020721. PubMed ID: 36341423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel candidate drugs in anti-tumor necrosis factor refractory Crohn's diseases: in silico study for drug repositioning.
    Kwak MS; Lee HH; Cha JM; Shin HP; Jeon JW; Yoon JY
    Sci Rep; 2020 Jul; 10(1):10708. PubMed ID: 32612148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Application of Computational Drug Repurposing Based on Transcriptomic Signatures.
    Karatzas E; Kolios G; Spyrou GM
    Methods Mol Biol; 2019; 1903():149-177. PubMed ID: 30547441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Review of Drug Repositioning Based Chemical-induced Cell Line Expression Data.
    Wang F; Lei X; Wu FX
    Curr Med Chem; 2020; 27(32):5340-5350. PubMed ID: 30381060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. gene2drug: a computational tool for pathway-based rational drug repositioning.
    Napolitano F; Carrella D; Mandriani B; Pisonero-Vaquero S; Sirci F; Medina DL; Brunetti-Pierri N; di Bernardo D
    Bioinformatics; 2018 May; 34(9):1498-1505. PubMed ID: 29236977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.