BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 27778280)

  • 21. A Dimethyl-Labeling-Based Strategy for Site-Specifically Quantitative Chemical Proteomics.
    Yang F; Gao J; Che J; Jia G; Wang C
    Anal Chem; 2018 Aug; 90(15):9576-9582. PubMed ID: 29989794
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oxime esters as selective, covalent inhibitors of the serine hydrolase retinoblastoma-binding protein 9 (RBBP9).
    Bachovchin DA; Wolfe MR; Masuda K; Brown SJ; Spicer TP; Fernandez-Vega V; Chase P; Hodder PS; Rosen H; Cravatt BF
    Bioorg Med Chem Lett; 2010 Apr; 20(7):2254-8. PubMed ID: 20207142
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Activity-based proteomics uncovers suppressed hydrolases and a neo-functionalised antibacterial enzyme at the plant-pathogen interface.
    Sueldo DJ; Godson A; Kaschani F; Krahn D; Kessenbrock T; Buscaill P; Schofield CJ; Kaiser M; van der Hoorn RAL
    New Phytol; 2024 Jan; 241(1):394-408. PubMed ID: 36866975
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Target identification with quantitative activity based protein profiling (ABPP).
    Chen X; Wong YK; Wang J; Zhang J; Lee YM; Shen HM; Lin Q; Hua ZC
    Proteomics; 2017 Feb; 17(3-4):. PubMed ID: 27723264
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Activity-Based Protein Profiling (ABPP) and Click Chemistry (CC)-ABPP by MudPIT Mass Spectrometry.
    Speers AE; Cravatt BF
    Curr Protoc Chem Biol; 2009; 1():29-41. PubMed ID: 21701697
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis and use of mechanism-based protein-profiling probes for retaining beta-D-glucosaminidases facilitate identification of Pseudomonas aeruginosa NagZ.
    Stubbs KA; Scaffidi A; Debowski AW; Mark BL; Stick RV; Vocadlo DJ
    J Am Chem Soc; 2008 Jan; 130(1):327-35. PubMed ID: 18067297
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Covalent protein modification: the current landscape of residue-specific electrophiles.
    Shannon DA; Weerapana E
    Curr Opin Chem Biol; 2015 Feb; 24():18-26. PubMed ID: 25461720
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Activity-Based Protein Profiling in Bacteria.
    Krysiak J; Sieber SA
    Methods Mol Biol; 2017; 1491():57-74. PubMed ID: 27778281
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The use of click chemistry in the emerging field of catalomics.
    Kalesh KA; Shi H; Ge J; Yao SQ
    Org Biomol Chem; 2010 Apr; 8(8):1749-62. PubMed ID: 20449474
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Activity-Based Protein Profiling with Natural Product-Derived Chemical Probes in Human Cell Lysates.
    Zweerink S; Pollmann T; Ninck S; Kaschani F; Kaiser M
    Methods Mol Biol; 2017; 1491():23-46. PubMed ID: 27778279
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Activity-Based Lipid Esterase Profiling of M. bovis BCG at Different Metabolic States Using Tetrahydrolipstatin (THL) as Bait.
    Ravindran MS; Wenk MR
    Methods Mol Biol; 2017; 1491():75-85. PubMed ID: 27778282
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microarray platform for profiling enzyme activities in complex proteomes.
    Sieber SA; Mondala TS; Head SR; Cravatt BF
    J Am Chem Soc; 2004 Dec; 126(48):15640-1. PubMed ID: 15571375
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Small-molecule probes elucidate global enzyme activity in a proteomic context.
    Lee JS; Yoo YH; Yoon CN
    BMB Rep; 2014 Mar; 47(3):149-57. PubMed ID: 24499666
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Discovery of Electrophiles and Profiling of Enzyme Cofactors.
    Dettling SE; Ahmadi M; Lin Z; He L; Matthews ML
    Curr Protoc Chem Biol; 2020 Dec; 12(4):e86. PubMed ID: 33197155
    [TBL] [Abstract][Full Text] [Related]  

  • 35. ABPP-HT*-Deep Meets Fast for Activity-Based Profiling of Deubiquitylating Enzymes Using Advanced DIA Mass Spectrometry Methods.
    Jones HBL; Heilig R; Davis S; Fischer R; Kessler BM; Pinto-Fernández A
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328685
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Natural products and their biological targets: proteomic and metabolomic labeling strategies.
    Böttcher T; Pitscheider M; Sieber SA
    Angew Chem Int Ed Engl; 2010 Apr; 49(15):2680-98. PubMed ID: 20333627
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Activity-based protein profiling: recent advances in probe development and applications.
    Yang P; Liu K
    Chembiochem; 2015 Mar; 16(5):712-24. PubMed ID: 25652106
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantification of In Vivo Target Engagement Using Microfluidic Activity-Based Protein Profiling.
    Reardon HT; Herbst RA; Henry CL; Herbst DM; Ngo N; Cisar JS; Weber OD; Niphakis MJ; O'Neill GP
    SLAS Technol; 2019 Oct; 24(5):489-498. PubMed ID: 31199699
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthetic Approaches of Epoxysuccinate Chemical Probes.
    Nicolau I; Hădade ND; Matache M; Funeriu DP
    Chembiochem; 2023 Aug; 24(16):e202300157. PubMed ID: 37096389
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Basal resistance against bacteria in Nicotiana benthamiana leaves is accompanied by reduced vascular staining and suppressed by multiple Pseudomonas syringae type III secretion system effector proteins.
    Oh HS; Collmer A
    Plant J; 2005 Oct; 44(2):348-59. PubMed ID: 16212612
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.