These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
259 related articles for article (PubMed ID: 27778306)
1. Heat and Mass Transfer Analysis of MHD Nanofluid Flow with Radiative Heat Effects in the Presence of Spherical Au-Metallic Nanoparticles. Qureshi MZ; Rubbab Q; Irshad S; Ahmad S; Aqeel M Nanoscale Res Lett; 2016 Dec; 11(1):472. PubMed ID: 27778306 [TBL] [Abstract][Full Text] [Related]
2. Magnetohydrodynamic stagnation point on a Casson nanofluid flow over a radially stretching sheet. Narender G; Govardhan K; Sreedhar Sarma G Beilstein J Nanotechnol; 2020; 11():1303-1315. PubMed ID: 32953374 [TBL] [Abstract][Full Text] [Related]
3. Entropy Generation and Heat Transfer Analysis in MHD Unsteady Rotating Flow for Aqueous Suspensions of Carbon Nanotubes with Nonlinear Thermal Radiation and Viscous Dissipation Effect. Jawad M; Shah Z; Khan A; Khan W; Kumam P; Islam S Entropy (Basel); 2019 May; 21(5):. PubMed ID: 33267206 [TBL] [Abstract][Full Text] [Related]
4. Computational Framework of Magnetized MgO-Ni/Water-Based Stagnation Nanoflow Past an Elastic Stretching Surface: Application in Solar Energy Coatings. Bhatti MM; Bég OA; Abdelsalam SI Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407169 [TBL] [Abstract][Full Text] [Related]
5. Radiation effect on viscous flow of a nanofluid and heat transfer over a nonlinearly stretching sheet. Hady FM; Ibrahim FS; Abdel-Gaied SM; Eid MR Nanoscale Res Lett; 2012 Apr; 7(1):229. PubMed ID: 22520273 [TBL] [Abstract][Full Text] [Related]
6. Heat and mass transfer on MHD squeezing flow of Jeffrey nanofluid in horizontal channel through permeable medium. Mat Noor NA; Shafie S; Admon MA PLoS One; 2021; 16(5):e0250402. PubMed ID: 33956793 [TBL] [Abstract][Full Text] [Related]
7. Nonlinear radiation heat transfer effects in the natural convective boundary layer flow of nanofluid past a vertical plate: a numerical study. Mustafa M; Mushtaq A; Hayat T; Ahmad B PLoS One; 2014; 9(9):e103946. PubMed ID: 25251242 [TBL] [Abstract][Full Text] [Related]
8. Entropy optimized MHD 3D nanomaterial of non-Newtonian fluid: A combined approach to good absorber of solar energy and intensification of heat transport. Nayak MK; Abdul Hakeem AK; Ganga B; Ijaz Khan M; Waqas M; Makinde OD Comput Methods Programs Biomed; 2020 Apr; 186():105131. PubMed ID: 31733519 [TBL] [Abstract][Full Text] [Related]
9. Transpiration and Viscous Dissipation Effects on Entropy Generation in Hybrid Nanofluid Flow over a Nonlinear Radially Stretching Disk. Farooq U; Afridi MI; Qasim M; Lu DC Entropy (Basel); 2018 Sep; 20(9):. PubMed ID: 33265757 [TBL] [Abstract][Full Text] [Related]
10. A numerical simulation for magnetohydrodynamic nanofluid flow and heat transfer in rotating horizontal annulus with thermal radiation. Peng Y; Alsagri AS; Afrand M; Moradi R RSC Adv; 2019 Jul; 9(39):22185-22197. PubMed ID: 35519474 [TBL] [Abstract][Full Text] [Related]
11. Computational Analysis of Nanoparticle Shapes on Hybrid Nanofluid Flow Due to Flat Horizontal Plate via Solar Collector. Imran M; Yasmin S; Waqas H; Khan SA; Muhammad T; Alshammari N; Hamadneh NN; Khan I Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35214992 [TBL] [Abstract][Full Text] [Related]
12. MHD boundary layer radiative, heat generating and chemical reacting flow past a wedge moving in a nanofluid. Khan MS; Karim I; Islam MS; Wahiduzzaman M Nano Converg; 2014; 1(1):20. PubMed ID: 28191400 [TBL] [Abstract][Full Text] [Related]
13. Entropy optimized Darcy-Forchheimer nanofluid (Silicon dioxide, Molybdenum disulfide) subject to temperature dependent viscosity. Abbas SZ; Khan WA; Kadry S; Khan MI; Waqas M; Khan MI Comput Methods Programs Biomed; 2020 Jul; 190():105363. PubMed ID: 32062091 [TBL] [Abstract][Full Text] [Related]
14. Heat variation on MHD Williamson hybrid nanofluid flow with convective boundary condition and Ohmic heating in a porous material. Rashad AM; Nafe MA; Eisa DA Sci Rep; 2023 Apr; 13(1):6071. PubMed ID: 37055474 [TBL] [Abstract][Full Text] [Related]
15. Heat transport and entropy optimization in flow of magneto-Williamson nanomaterial with Arrhenius activation energy. Alsaadi FE; Hayat T; Khan MI; Alsaadi FE Comput Methods Programs Biomed; 2020 Jan; 183():105051. PubMed ID: 31526945 [TBL] [Abstract][Full Text] [Related]
16. Entropy generation optimization of cilia regulated MHD ternary hybrid Jeffery nanofluid with Arrhenius activation energy and induced magnetic field. Mishra NK; Sharma BK; Sharma P; Muhammad T; Pérez LM Sci Rep; 2023 Sep; 13(1):14483. PubMed ID: 37660186 [TBL] [Abstract][Full Text] [Related]
17. Nonlinear radiation effect on MHD Carreau nanofluid flow over a radially stretching surface with zero mass flux at the surface. Lu D; Ramzan M; Ul Huda N; Chung JD; Farooq U Sci Rep; 2018 Feb; 8(1):3709. PubMed ID: 29487368 [TBL] [Abstract][Full Text] [Related]
18. Impacts of gold nanoparticles on MHD mixed convection Poiseuille flow of nanofluid passing through a porous medium in the presence of thermal radiation, thermal diffusion and chemical reaction. Aman S; Khan I; Ismail Z; Salleh MZ Neural Comput Appl; 2018; 30(3):789-797. PubMed ID: 30100679 [TBL] [Abstract][Full Text] [Related]
19. Computational Analysis of the Morphological Aspects of Triadic Hybridized Magnetic Nanoparticles Suspended in Liquid Streamed in Coaxially Swirled Disks. Qureshi ZA; Bilal S; Shah IA; Akgül A; Jarrar R; Shanak H; Asad J Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35214999 [TBL] [Abstract][Full Text] [Related]
20. Radiative MHD Nanofluid Flow over a Moving Thin Needle with Entropy Generation in a Porous Medium with Dust Particles and Hall Current. Tlili I; Ramzan M; Kadry S; Kim HW; Nam Y Entropy (Basel); 2020 Mar; 22(3):. PubMed ID: 33286128 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]