BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

418 related articles for article (PubMed ID: 27779078)

  • 21. Age-associated changes in SAPK/JNK and p38 MAPK signaling in response to the generation of ROS by 3-nitropropionic acid.
    Hsieh CC; Rosenblatt JI; Papaconstantinou J
    Mech Ageing Dev; 2003 Jun; 124(6):733-46. PubMed ID: 12782417
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Arsenic induces pancreatic β-cell apoptosis via the oxidative stress-regulated mitochondria-dependent and endoplasmic reticulum stress-triggered signaling pathways.
    Lu TH; Su CC; Chen YW; Yang CY; Wu CC; Hung DZ; Chen CH; Cheng PW; Liu SH; Huang CF
    Toxicol Lett; 2011 Feb; 201(1):15-26. PubMed ID: 21145380
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tiam1-Rac1 Axis Promotes Activation of p38 MAP Kinase in the Development of Diabetic Retinopathy: Evidence for a Requisite Role for Protein Palmitoylation.
    Veluthakal R; Kumar B; Mohammad G; Kowluru A; Kowluru RA
    Cell Physiol Biochem; 2015; 36(1):208-20. PubMed ID: 25967961
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fractalkine increases mesangial cell proliferation through reactive oxygen species and mitogen-activated protein kinases.
    Park J; Song KH; Ha H
    Transplant Proc; 2012 May; 44(4):1026-8. PubMed ID: 22564616
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sustained versus transient ERK1/2 signaling underlies the anti- and proapoptotic effects of oxidative stress in human RPE cells.
    Glotin AL; Calipel A; Brossas JY; Faussat AM; Tréton J; Mascarelli F
    Invest Ophthalmol Vis Sci; 2006 Oct; 47(10):4614-23. PubMed ID: 17003459
    [TBL] [Abstract][Full Text] [Related]  

  • 26. TCF2 attenuates FFA-induced damage in islet β-cells by regulating production of insulin and ROS.
    Quan X; Zhang L; Li Y; Liang C
    Int J Mol Sci; 2014 Jul; 15(8):13317-32. PubMed ID: 25079440
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reactive oxygen species-mediated pancreatic beta-cell death is regulated by interactions between stress-activated protein kinases, p38 and c-Jun N-terminal kinase, and mitogen-activated protein kinase phosphatases.
    Hou N; Torii S; Saito N; Hosaka M; Takeuchi T
    Endocrinology; 2008 Apr; 149(4):1654-65. PubMed ID: 18187551
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Atrial natriuretic peptide induces mitogen-activated protein kinase phosphatase-1 in human endothelial cells via Rac1 and NAD(P)H oxidase/Nox2-activation.
    Fürst R; Brueckl C; Kuebler WM; Zahler S; Krötz F; Görlach A; Vollmar AM; Kiemer AK
    Circ Res; 2005 Jan; 96(1):43-53. PubMed ID: 15569826
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Roles of GTP and Rho GTPases in pancreatic islet beta cell function and dysfunction.
    Kowluru A
    Small GTPases; 2021; 12(5-6):323-335. PubMed ID: 32867592
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The c-Jun amino-terminal kinase pathway is preferentially activated by interleukin-1 and controls apoptosis in differentiating pancreatic beta-cells.
    Ammendrup A; Maillard A; Nielsen K; Aabenhus Andersen N; Serup P; Dragsbaek Madsen O; Mandrup-Poulsen T; Bonny C
    Diabetes; 2000 Sep; 49(9):1468-76. PubMed ID: 10969830
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydrogen peroxide-induced neuronal apoptosis is associated with inhibition of protein phosphatase 2A and 5, leading to activation of MAPK pathway.
    Chen L; Liu L; Yin J; Luo Y; Huang S
    Int J Biochem Cell Biol; 2009 Jun; 41(6):1284-95. PubMed ID: 19038359
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Abrupt reoxygenation of microvascular endothelial cells after hypoxia activates ERK1/2 and JNK1, leading to NADPH oxidase-dependent oxidant production.
    Yu G; Peng T; Feng Q; Tyml K
    Microcirculation; 2007 Feb; 14(2):125-36. PubMed ID: 17365667
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mitogen-activated protein kinases: a new therapeutic target in cardiac pathology.
    Ravingerová T; Barancík M; Strnisková M
    Mol Cell Biochem; 2003 May; 247(1-2):127-38. PubMed ID: 12841640
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Potential roles of PP2A-Rac1 signaling axis in pancreatic β-cell dysfunction under metabolic stress: Progress and promise.
    Kowluru A
    Biochem Pharmacol; 2020 Oct; 180():114138. PubMed ID: 32634437
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Opposing roles of p47phox in basal versus angiotensin II-stimulated alterations in vascular O2- production, vascular tone, and mitogen-activated protein kinase activation.
    Li JM; Wheatcroft S; Fan LM; Kearney MT; Shah AM
    Circulation; 2004 Mar; 109(10):1307-13. PubMed ID: 14993144
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reactive oxygen species activate mitogen-activated protein kinases in pancreatic acinar cells.
    Dabrowski A; Boguslowicz C; Dabrowska M; Tribillo I; Gabryelewicz A
    Pancreas; 2000 Nov; 21(4):376-84. PubMed ID: 11075992
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Paeoniflorin protects pancreatic β cells from STZ-induced damage through inhibition of the p38 MAPK and JNK signaling pathways.
    Liu Y; Han J; Zhou Z; Li D
    Eur J Pharmacol; 2019 Jun; 853():18-24. PubMed ID: 30880178
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reactive oxygen species in the activation of MAP kinases.
    Son Y; Kim S; Chung HT; Pae HO
    Methods Enzymol; 2013; 528():27-48. PubMed ID: 23849857
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Increased cytokine-induced cytotoxicity of pancreatic islet cells from transgenic mice expressing the Src-like tyrosine kinase GTK.
    Annerén C; Welsh M
    Mol Med; 2001 May; 7(5):301-10. PubMed ID: 11474576
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reactive oxygen species-induced activation of the MAP kinase signaling pathways.
    McCubrey JA; Lahair MM; Franklin RA
    Antioxid Redox Signal; 2006; 8(9-10):1775-89. PubMed ID: 16987031
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.