These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
284 related articles for article (PubMed ID: 27779164)
1. Three-dimensional Printed Scaffolds with Gelatin and Platelets Enhance Zhu W; Xu C; Ma BP; Zheng ZB; Li YL; Ma Q; Wu GL; Weng XS Chin Med J (Engl); 2016 Nov; 129(21):2576-2581. PubMed ID: 27779164 [TBL] [Abstract][Full Text] [Related]
2. 3D printing process of oxidized nanocellulose and gelatin scaffold. Xu X; Zhou J; Jiang Y; Zhang Q; Shi H; Liu D J Biomater Sci Polym Ed; 2018 Aug; 29(12):1498-1513. PubMed ID: 29716440 [TBL] [Abstract][Full Text] [Related]
3. 3D printed TCP-based scaffold incorporating VEGF-loaded PLGA microspheres for craniofacial tissue engineering. Fahimipour F; Rasoulianboroujeni M; Dashtimoghadam E; Khoshroo K; Tahriri M; Bastami F; Lobner D; Tayebi L Dent Mater; 2017 Nov; 33(11):1205-1216. PubMed ID: 28882369 [TBL] [Abstract][Full Text] [Related]
4. Suture Fiber Reinforcement of a 3D Printed Gelatin Scaffold for Its Potential Application in Soft Tissue Engineering. Choi DJ; Choi K; Park SJ; Kim YJ; Chung S; Kim CH Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769034 [TBL] [Abstract][Full Text] [Related]
5. Cryogenic 3D printing of heterogeneous scaffolds with gradient mechanical strengths and spatial delivery of osteogenic peptide/TGF-β1 for osteochondral tissue regeneration. Wang C; Yue H; Huang W; Lin X; Xie X; He Z; He X; Liu S; Bai L; Lu B; Wei Y; Wang M Biofabrication; 2020 Mar; 12(2):025030. PubMed ID: 32106097 [TBL] [Abstract][Full Text] [Related]
7. Oxygen Plasma Treatment on 3D-Printed Chitosan/Gelatin/Hydroxyapatite Scaffolds for Bone Tissue Engineering. Lee CM; Yang SW; Jung SC; Kim BH J Nanosci Nanotechnol; 2017 Apr; 17(4):2747-750. PubMed ID: 29664596 [TBL] [Abstract][Full Text] [Related]
8. 3D-Printed membrane as an alternative to amniotic membrane for ocular surface/conjunctival defect reconstruction: An in vitro & in vivo study. Dehghani S; Rasoulianboroujeni M; Ghasemi H; Keshel SH; Nozarian Z; Hashemian MN; Zarei-Ghanavati M; Latifi G; Ghaffari R; Cui Z; Ye H; Tayebi L Biomaterials; 2018 Aug; 174():95-112. PubMed ID: 29793112 [TBL] [Abstract][Full Text] [Related]
9. 3D-printed porous titanium changed femoral head repair growth patterns: osteogenesis and vascularisation in porous titanium. Zhu W; Zhao Y; Ma Q; Wang Y; Wu Z; Weng X J Mater Sci Mater Med; 2017 Apr; 28(4):62. PubMed ID: 28251470 [TBL] [Abstract][Full Text] [Related]
10. Synthesis of and in vitro and in vivo evaluation of a novel TGF-β1-SF-CS three-dimensional scaffold for bone tissue engineering. Tong S; Xu DP; Liu ZM; Du Y; Wang XK Int J Mol Med; 2016 Aug; 38(2):367-80. PubMed ID: 27352815 [TBL] [Abstract][Full Text] [Related]
11. Microstructure and in vitro cellular response to novel soy protein-based porous structures for tissue regeneration applications. Olami H; Zilberman M J Biomater Appl; 2016 Feb; 30(7):1004-15. PubMed ID: 26526932 [TBL] [Abstract][Full Text] [Related]
12. Dual-crosslinked 3D printed gelatin scaffolds with potential for temporomandibular joint cartilage regeneration. Helgeland E; Rashad A; Campodoni E; Goksøyr Ø; Pedersen TØ; Sandri M; Rosén A; Mustafa K Biomed Mater; 2021 Mar; 16(3):. PubMed ID: 33592589 [TBL] [Abstract][Full Text] [Related]
13. Effects of bone morphogenic protein-2 loaded on the 3D-printed MesoCS scaffolds. Huang KH; Lin YH; Shie MY; Lin CP J Formos Med Assoc; 2018 Oct; 117(10):879-887. PubMed ID: 30097222 [TBL] [Abstract][Full Text] [Related]
14. The effect of hyaluronic acid on biofunctionality of gelatin-collagen intestine tissue engineering scaffolds. Shabafrooz V; Mozafari M; Köhler GA; Assefa S; Vashaee D; Tayebi L J Biomed Mater Res A; 2014 Sep; 102(9):3130-9. PubMed ID: 24132994 [TBL] [Abstract][Full Text] [Related]
15. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy. Ma H; Feng C; Chang J; Wu C Acta Biomater; 2018 Oct; 79():37-59. PubMed ID: 30165201 [TBL] [Abstract][Full Text] [Related]
16. Three-Dimensional Printing of Hollow-Struts-Packed Bioceramic Scaffolds for Bone Regeneration. Luo Y; Zhai D; Huan Z; Zhu H; Xia L; Chang J; Wu C ACS Appl Mater Interfaces; 2015 Nov; 7(43):24377-83. PubMed ID: 26479454 [TBL] [Abstract][Full Text] [Related]
17. 3D-printed cellulose nanocrystals and gelatin scaffolds with bioactive cues for regenerative medicine: Advancing biomedical applications. Singh P; Baniasadi H; Gupta S; Ghosh R; Shaikh S; Seppälä J; Kumar A Int J Biol Macromol; 2024 Oct; 278(Pt 1):134402. PubMed ID: 39094885 [TBL] [Abstract][Full Text] [Related]
18. In vitro and in vivo release of vascular endothelial growth factor from gelatin microparticles and biodegradable composite scaffolds. Patel ZS; Ueda H; Yamamoto M; Tabata Y; Mikos AG Pharm Res; 2008 Oct; 25(10):2370-8. PubMed ID: 18663411 [TBL] [Abstract][Full Text] [Related]
19. Multiscale porosity in a 3D printed gellan-gelatin composite for bone tissue engineering. Gupta D; Vashisth P; Bellare J Biomed Mater; 2021 Apr; 16(3):. PubMed ID: 33761468 [TBL] [Abstract][Full Text] [Related]
20. 3D printing mesoporous bioactive glass/sodium alginate/gelatin sustained release scaffolds for bone repair. Wu J; Miao G; Zheng Z; Li Z; Ren W; Wu C; Li Y; Huang Z; Yang L; Guo L J Biomater Appl; 2019 Jan; 33(6):755-765. PubMed ID: 30426864 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]