These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Structural Polymorphism in a Self-Assembled Tri-Aromatic Peptide System. Brown N; Lei J; Zhan C; Shimon LJW; Adler-Abramovich L; Wei G; Gazit E ACS Nano; 2018 Apr; 12(4):3253-3262. PubMed ID: 29558116 [TBL] [Abstract][Full Text] [Related]
6. Dual self-assembly of supramolecular peptide nanotubes to provide stabilisation in water. Rho JY; Cox H; Mansfield EDH; Ellacott SH; Peltier R; Brendel JC; Hartlieb M; Waigh TA; Perrier S Nat Commun; 2019 Oct; 10(1):4708. PubMed ID: 31624265 [TBL] [Abstract][Full Text] [Related]
7. Microfluidics for real-time direct monitoring of self- and co-assembly biomolecular processes. Arnon ZA; Gilead S; Gazit E Nanotechnology; 2019 Mar; 30(10):102001. PubMed ID: 30537683 [TBL] [Abstract][Full Text] [Related]
8. Elementary building blocks of self-assembled peptide nanotubes. Amdursky N; Molotskii M; Gazit E; Rosenman G J Am Chem Soc; 2010 Nov; 132(44):15632-6. PubMed ID: 20958029 [TBL] [Abstract][Full Text] [Related]
9. Minimalistic peptide supramolecular co-assembly: expanding the conformational space for nanotechnology. Makam P; Gazit E Chem Soc Rev; 2018 May; 47(10):3406-3420. PubMed ID: 29498728 [TBL] [Abstract][Full Text] [Related]
10. Triphenylalanine peptides self-assemble into nanospheres and nanorods that are different from the nanovesicles and nanotubes formed by diphenylalanine peptides. Guo C; Luo Y; Zhou R; Wei G Nanoscale; 2014 Mar; 6(5):2800-11. PubMed ID: 24468750 [TBL] [Abstract][Full Text] [Related]
11. Expanding the structural diversity of peptide assemblies by coassembling dipeptides with diphenylalanine. Tang Y; Yao Y; Wei G Nanoscale; 2020 Feb; 12(5):3038-3049. PubMed ID: 31971529 [TBL] [Abstract][Full Text] [Related]
12. Conformation Dependence of Diphenylalanine Self-Assembly Structures and Dynamics: Insights from Hybrid-Resolution Simulations. Xiong Q; Jiang Y; Cai X; Yang F; Li Z; Han W ACS Nano; 2019 Apr; 13(4):4455-4468. PubMed ID: 30869864 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of Charge-Regulated Supramolecular Copolymerization to Tune the Time Scale for Oxidative Disassembly of β-Sheet Comonomers. Berac CM; Zengerling L; Straβburger D; Otter R; Urschbach M; Besenius P Macromol Rapid Commun; 2020 Jan; 41(1):e1900476. PubMed ID: 31682046 [TBL] [Abstract][Full Text] [Related]
14. Expanding the Structural Diversity and Functional Scope of Diphenylalanine-Based Peptide Architectures by Hierarchical Coassembly. Ji W; Tang Y; Makam P; Yao Y; Jiao R; Cai K; Wei G; Gazit E J Am Chem Soc; 2021 Oct; 143(42):17633-17645. PubMed ID: 34647727 [TBL] [Abstract][Full Text] [Related]
19. Controlled Assembly and Disassembly of Higher-Order Peptide Nanotubes. Ma X; Zhao Y; Jiang X; Fan M; He C; Qi H; Wang Y; Wang D; Ke Y; Xu H; Chen C; Wang J ACS Appl Mater Interfaces; 2024 Feb; 16(8):9787-9798. PubMed ID: 38350068 [TBL] [Abstract][Full Text] [Related]
20. Self-assembly of diphenylalanine backbone homologues and their combination with functionalized carbon nanotubes. Dinesh B; Squillaci MA; Ménard-Moyon C; Samorì P; Bianco A Nanoscale; 2015 Oct; 7(38):15873-9. PubMed ID: 26359907 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]