These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 27779182)

  • 1. Dynamic microfluidic control of supramolecular peptide self-assembly.
    Arnon ZA; Vitalis A; Levin A; Michaels TCT; Caflisch A; Knowles TPJ; Adler-Abramovich L; Gazit E
    Nat Commun; 2016 Oct; 7():13190. PubMed ID: 27779182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling the Physical Dimensions of Peptide Nanotubes by Supramolecular Polymer Coassembly.
    Adler-Abramovich L; Marco P; Arnon ZA; Creasey RC; Michaels TC; Levin A; Scurr DJ; Roberts CJ; Knowles TP; Tendler SJ; Gazit E
    ACS Nano; 2016 Aug; 10(8):7436-42. PubMed ID: 27351519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ostwald's rule of stages governs structural transitions and morphology of dipeptide supramolecular polymers.
    Levin A; Mason TO; Adler-Abramovich L; Buell AK; Meisl G; Galvagnion C; Bram Y; Stratford SA; Dobson CM; Knowles TP; Gazit E
    Nat Commun; 2014 Nov; 5():5219. PubMed ID: 25391268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural Polymorphism in a Self-Assembled Tri-Aromatic Peptide System.
    Brown N; Lei J; Zhan C; Shimon LJW; Adler-Abramovich L; Wei G; Gazit E
    ACS Nano; 2018 Apr; 12(4):3253-3262. PubMed ID: 29558116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual self-assembly of supramolecular peptide nanotubes to provide stabilisation in water.
    Rho JY; Cox H; Mansfield EDH; Ellacott SH; Peltier R; Brendel JC; Hartlieb M; Waigh TA; Perrier S
    Nat Commun; 2019 Oct; 10(1):4708. PubMed ID: 31624265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidics for real-time direct monitoring of self- and co-assembly biomolecular processes.
    Arnon ZA; Gilead S; Gazit E
    Nanotechnology; 2019 Mar; 30(10):102001. PubMed ID: 30537683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elementary building blocks of self-assembled peptide nanotubes.
    Amdursky N; Molotskii M; Gazit E; Rosenman G
    J Am Chem Soc; 2010 Nov; 132(44):15632-6. PubMed ID: 20958029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Minimalistic peptide supramolecular co-assembly: expanding the conformational space for nanotechnology.
    Makam P; Gazit E
    Chem Soc Rev; 2018 May; 47(10):3406-3420. PubMed ID: 29498728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triphenylalanine peptides self-assemble into nanospheres and nanorods that are different from the nanovesicles and nanotubes formed by diphenylalanine peptides.
    Guo C; Luo Y; Zhou R; Wei G
    Nanoscale; 2014 Mar; 6(5):2800-11. PubMed ID: 24468750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expanding the structural diversity of peptide assemblies by coassembling dipeptides with diphenylalanine.
    Tang Y; Yao Y; Wei G
    Nanoscale; 2020 Feb; 12(5):3038-3049. PubMed ID: 31971529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformation Dependence of Diphenylalanine Self-Assembly Structures and Dynamics: Insights from Hybrid-Resolution Simulations.
    Xiong Q; Jiang Y; Cai X; Yang F; Li Z; Han W
    ACS Nano; 2019 Apr; 13(4):4455-4468. PubMed ID: 30869864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of Charge-Regulated Supramolecular Copolymerization to Tune the Time Scale for Oxidative Disassembly of β-Sheet Comonomers.
    Berac CM; Zengerling L; Straβburger D; Otter R; Urschbach M; Besenius P
    Macromol Rapid Commun; 2020 Jan; 41(1):e1900476. PubMed ID: 31682046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expanding the Structural Diversity and Functional Scope of Diphenylalanine-Based Peptide Architectures by Hierarchical Coassembly.
    Ji W; Tang Y; Makam P; Yao Y; Jiao R; Cai K; Wei G; Gazit E
    J Am Chem Soc; 2021 Oct; 143(42):17633-17645. PubMed ID: 34647727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Halogen-Bond-Mediated Self-Assembly of Polymer-Resorcinarene Complexes.
    Välimäki S; Gustavsson L; Beyeh NK; Linko V; Kostiainen MA
    Macromol Rapid Commun; 2019 Jul; 40(14):e1900158. PubMed ID: 31111995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the self-assembly mechanism of diphenylalanine-based peptide nanovesicles and nanotubes.
    Guo C; Luo Y; Zhou R; Wei G
    ACS Nano; 2012 May; 6(5):3907-18. PubMed ID: 22468743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient Water Self-Diffusion in Diphenylalanine Peptide Nanotubes.
    Zelenovskiy PS; Domingues EM; Slabov V; Kopyl S; Ugolkov VL; Figueiredo FML; Kholkin AL
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27485-27492. PubMed ID: 32463652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supramolecular assembly of functional peptide-polymer conjugates.
    Otter R; Besenius P
    Org Biomol Chem; 2019 Jul; 17(28):6719-6734. PubMed ID: 31241089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled Assembly and Disassembly of Higher-Order Peptide Nanotubes.
    Ma X; Zhao Y; Jiang X; Fan M; He C; Qi H; Wang Y; Wang D; Ke Y; Xu H; Chen C; Wang J
    ACS Appl Mater Interfaces; 2024 Feb; 16(8):9787-9798. PubMed ID: 38350068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembly of diphenylalanine backbone homologues and their combination with functionalized carbon nanotubes.
    Dinesh B; Squillaci MA; Ménard-Moyon C; Samorì P; Bianco A
    Nanoscale; 2015 Oct; 7(38):15873-9. PubMed ID: 26359907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.