These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 27779239)

  • 41. Multiple length and time scales of dynamic heterogeneities in model glass-forming liquids: a systematic analysis of multi-point and multi-time correlations.
    Kim K; Saito S
    J Chem Phys; 2013 Mar; 138(12):12A506. PubMed ID: 23556757
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Boiling temperature as a scaling parameter for the microscopic relaxation dynamics in molecular liquids.
    Mamontov E
    J Phys Chem B; 2013 Aug; 117(32):9501-7. PubMed ID: 23869489
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Thermodynamic interpretation of the scaling of the dynamics of supercooled liquids.
    Casalini R; Mohanty U; Roland CM
    J Chem Phys; 2006 Jul; 125(1):014505. PubMed ID: 16863314
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Short-Time Beta Relaxation in Glass-Forming Liquids Is Cooperative in Nature.
    Karmakar S; Dasgupta C; Sastry S
    Phys Rev Lett; 2016 Feb; 116(8):085701. PubMed ID: 26967425
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Correlation between dynamic heterogeneity and medium-range order in two-dimensional glass-forming liquids.
    Kawasaki T; Araki T; Tanaka H
    Phys Rev Lett; 2007 Nov; 99(21):215701. PubMed ID: 18233228
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Finite-size scaling for the glass transition: the role of a static length scale.
    Karmakar S; Procaccia I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061502. PubMed ID: 23367953
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Inverted core-shell potential energy landscape of icosahedral clusters in deeply undercooled metallic liquids and glasses and its effect on the glass forming ability of bcc and fcc metals.
    Xu D; Wang Z; Chang TY; Chen F
    J Phys Condens Matter; 2020 Jul; 32(40):. PubMed ID: 32619208
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Control of the fragility of a glass-forming liquid using the liquid-liquid phase transition.
    Kurita R; Tanaka H
    Phys Rev Lett; 2005 Aug; 95(6):065701. PubMed ID: 16090963
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fractal atomic-level percolation in metallic glasses.
    Chen DZ; Shi CY; An Q; Zeng Q; Mao WL; Goddard WA; Greer JR
    Science; 2015 Sep; 349(6254):1306-10. PubMed ID: 26383945
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Intermolecular forces and the glass transition.
    Hall RW; Wolynes PG
    J Phys Chem B; 2008 Jan; 112(2):301-12. PubMed ID: 17990867
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Spatially correlated dynamics in a simulated glass-forming polymer melt: analysis of clustering phenomena.
    Gebremichael Y; Schrøder TB; Starr FW; Glotzer SC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 1):051503. PubMed ID: 11735925
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Influence of the interatomic repulsive hardness on the microstructure and dynamics of CuZr metallic glasses.
    Cao X; Sun M
    J Mol Model; 2022 Aug; 28(9):265. PubMed ID: 35987879
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A thermodynamic connection to the fragility of glass-forming liquids.
    Martinez LM; Angell CA
    Nature; 2001 Apr; 410(6829):663-7. PubMed ID: 11287947
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Role of entropy in the thermodynamic evolution of the time scale of molecular dynamics near the glass transition.
    Grzybowska K; Grzybowski A; Pawlus S; Pionteck J; Paluch M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062305. PubMed ID: 26172717
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Glass Transition in Supercooled Liquids with Medium-Range Crystalline Order.
    Tah I; Sengupta S; Sastry S; Dasgupta C; Karmakar S
    Phys Rev Lett; 2018 Aug; 121(8):085703. PubMed ID: 30192617
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Understanding the dynamics of glass-forming liquids with random pinning within the random first order transition theory.
    Chakrabarty S; Das R; Karmakar S; Dasgupta C
    J Chem Phys; 2016 Jul; 145(3):034507. PubMed ID: 27448896
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The role of liquid-liquid transition in glass formation of CuZr alloys.
    Zhao X; Wang C; Zheng H; Tian Z; Hu L
    Phys Chem Chem Phys; 2017 Jun; 19(24):15962-15972. PubMed ID: 28594028
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identification of long-lived clusters and their link to slow dynamics in a model glass former.
    Malins A; Eggers J; Royall CP; Williams SR; Tanaka H
    J Chem Phys; 2013 Mar; 138(12):12A535. PubMed ID: 23556786
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dynamic criticality in glass-forming liquids.
    Whitelam S; Berthier L; Garrahan JP
    Phys Rev Lett; 2004 May; 92(18):185705. PubMed ID: 15169509
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Scaling of the hysteresis in the glass transition of glycerol with the temperature scanning rate.
    Wang YZ; Li Y; Zhang JX
    J Chem Phys; 2011 Mar; 134(11):114510. PubMed ID: 21428635
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.