These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Inertial Sensing and Encoding of Self-Motion: Structural and Functional Similarities across Metazoan Taxa. Rauscher MJ; Fox JL Integr Comp Biol; 2018 Nov; 58(5):832-843. PubMed ID: 29860381 [TBL] [Abstract][Full Text] [Related]
3. Surprising characteristics of visual systems of invertebrates. González-Martín-Moro J; Hernández-Verdejo JL; Jiménez-Gahete AE Arch Soc Esp Oftalmol; 2017 Jan; 92(1):19-28. PubMed ID: 27422478 [TBL] [Abstract][Full Text] [Related]
4. Comparative Aspects of Hearing in Vertebrates and Insects with Antennal Ears. Albert JT; Kozlov AS Curr Biol; 2016 Oct; 26(20):R1050-R1061. PubMed ID: 27780047 [TBL] [Abstract][Full Text] [Related]
5. Brainstem control of orienting movements: intrinsic coordinate systems and underlying circuitry. Masino T Brain Behav Evol; 1992; 40(2-3):98-111. PubMed ID: 1422810 [TBL] [Abstract][Full Text] [Related]
6. Origin and evolution of sleep: roles of vision and endothermy. Kavanau JL Brain Res Bull; 1997; 42(4):245-64. PubMed ID: 9043711 [TBL] [Abstract][Full Text] [Related]
7. A jitter after-effect reveals motion-based stabilization of vision. Murakami I; Cavanagh P Nature; 1998 Oct; 395(6704):798-801. PubMed ID: 9796813 [TBL] [Abstract][Full Text] [Related]
8. Vision in dim light: highlights and challenges. O'Carroll DC; Warrant EJ Philos Trans R Soc Lond B Biol Sci; 2017 Apr; 372(1717):. PubMed ID: 28193807 [No Abstract] [Full Text] [Related]
9. New Insights from Genetic Data Sets on the Function and Evolution of Visual Systems: Introduction to a Virtual Symposium in The Biological Bulletin. Speiser DI; Kier WM Biol Bull; 2017 Aug; 233(1):1-2. PubMed ID: 29182500 [No Abstract] [Full Text] [Related]
10. Target detection in insects: optical, neural and behavioral optimizations. Gonzalez-Bellido PT; Fabian ST; Nordström K Curr Opin Neurobiol; 2016 Dec; 41():122-128. PubMed ID: 27662056 [TBL] [Abstract][Full Text] [Related]
11. Complementary feedback control enables effective gaze stabilization in animals. Cellini B; Salem W; Mongeau JM Proc Natl Acad Sci U S A; 2022 May; 119(19):e2121660119. PubMed ID: 35503912 [TBL] [Abstract][Full Text] [Related]
12. Gaze stabilization by efference copy signaling without sensory feedback during vertebrate locomotion. Lambert FM; Combes D; Simmers J; Straka H Curr Biol; 2012 Sep; 22(18):1649-58. PubMed ID: 22840517 [TBL] [Abstract][Full Text] [Related]
13. Polarization contrasts and their effect on the gaze stabilization of crustaceans. Drerup C; How MJ J Exp Biol; 2021 Apr; 224(Pt 7):. PubMed ID: 33692078 [TBL] [Abstract][Full Text] [Related]
14. Polarization contrasts and their effect on the gaze stabilization of crustaceans. Drerup C; How MJ J Exp Biol; 2021 Apr; 224(7):. PubMed ID: 34424966 [TBL] [Abstract][Full Text] [Related]
15. Contrast sensitivity and the detection of moving patterns and features. O'Carroll DC; Wiederman SD Philos Trans R Soc Lond B Biol Sci; 2014; 369(1636):20130043. PubMed ID: 24395970 [TBL] [Abstract][Full Text] [Related]
16. A comprehensive gaze stabilization controller based on cerebellar internal models. Vannucci L; Falotico E; Tolu S; Cacucciolo V; Dario P; Hautop Lund H; Laschi C Bioinspir Biomim; 2017 Oct; 12(6):065001. PubMed ID: 28795949 [TBL] [Abstract][Full Text] [Related]