These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 27780080)

  • 1. Iron biofortification in the 21st century: setting realistic targets, overcoming obstacles, and new strategies for healthy nutrition.
    Vasconcelos MW; Gruissem W; Bhullar NK
    Curr Opin Biotechnol; 2017 Apr; 44():8-15. PubMed ID: 27780080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic engineering of micronutrients in crop plants.
    Blancquaert D; De Steur H; Gellynck X; Van Der Straeten D
    Ann N Y Acad Sci; 2017 Feb; 1390(1):59-73. PubMed ID: 27801945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reducing Mineral and Vitamin Deficiencies through Biofortification: Progress Under HarvestPlus.
    Bouis H
    World Rev Nutr Diet; 2018; 118():112-122. PubMed ID: 29656297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From harvest to health: challenges for developing biofortified staple foods and determining their impact on micronutrient status.
    Hotz C; McClafferty B
    Food Nutr Bull; 2007 Jun; 28(2 Suppl):S271-9. PubMed ID: 17658073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial-assisted and genomic-assisted breeding: a two way approach for the improvement of nutritional quality traits in agricultural crops.
    Chandra AK; Kumar A; Bharati A; Joshi R; Agrawal A; Kumar S
    3 Biotech; 2020 Jan; 10(1):2. PubMed ID: 31824813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Present and future of folate biofortification of crop plants.
    Blancquaert D; De Steur H; Gellynck X; Van Der Straeten D
    J Exp Bot; 2014 Mar; 65(4):895-906. PubMed ID: 24574483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Availability, production, and consumption of crops biofortified by plant breeding: current evidence and future potential.
    Saltzman A; Birol E; Oparinde A; Andersson MS; Asare-Marfo D; Diressie MT; Gonzalez C; Lividini K; Moursi M; Zeller M
    Ann N Y Acad Sci; 2017 Feb; 1390(1):104-114. PubMed ID: 28253441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biofortification of Crops to Fight Anemia: Role of Vacuolar Iron Transporters.
    Krishna TPA; Ceasar SA; Maharajan T
    J Agric Food Chem; 2023 Mar; 71(8):3583-3598. PubMed ID: 36802625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nutrient biofortification of food crops.
    Hirschi KD
    Annu Rev Nutr; 2009; 29():401-21. PubMed ID: 19400753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GM biofortified crops: potential effects on targeting the micronutrient intake gap in human populations.
    De Steur H; Mehta S; Gellynck X; Finkelstein JL
    Curr Opin Biotechnol; 2017 Apr; 44():181-188. PubMed ID: 28288329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biofortification-A Frontier Novel Approach to Enrich Micronutrients in Field Crops to Encounter the Nutritional Security.
    Dhaliwal SS; Sharma V; Shukla AK; Verma V; Kaur M; Shivay YS; Nisar S; Gaber A; Brestic M; Barek V; Skalicky M; Ondrisik P; Hossain A
    Molecules; 2022 Feb; 27(4):. PubMed ID: 35209127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Folate biofortification in food crops.
    Strobbe S; Van Der Straeten D
    Curr Opin Biotechnol; 2017 Apr; 44():202-211. PubMed ID: 28329726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nutritional enhancement of rice for human health: the contribution of biotechnology.
    Bhullar NK; Gruissem W
    Biotechnol Adv; 2013; 31(1):50-7. PubMed ID: 22343216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biotechnological Approaches for Generating Zinc-Enriched Crops to Combat Malnutrition.
    Hefferon K
    Nutrients; 2019 Jan; 11(2):. PubMed ID: 30678136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron-biofortified staple food crops for improving iron status: a review of the current evidence.
    Finkelstein JL; Haas JD; Mehta S
    Curr Opin Biotechnol; 2017 Apr; 44():138-145. PubMed ID: 28131049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selenium Biofortification of Agricultural Crops and Effects on Plant Nutrients and Bioactive Compounds Important for Human Health and Disease Prevention - a Review.
    Newman R; Waterland N; Moon Y; Tou JC
    Plant Foods Hum Nutr; 2019 Dec; 74(4):449-460. PubMed ID: 31522406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron Biofortification of Staple Crops: Lessons and Challenges in Plant Genetics.
    Connorton JM; Balk J
    Plant Cell Physiol; 2019 Jul; 60(7):1447-1456. PubMed ID: 31058958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Combined Application of the Caco-2 Cell Bioassay Coupled with In Vivo (Gallus gallus) Feeding Trial Represents an Effective Approach to Predicting Fe Bioavailability in Humans.
    Tako E; Bar H; Glahn RP
    Nutrients; 2016 Nov; 8(11):. PubMed ID: 27869705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advantages and limitations of in vitro and in vivo methods of iron and zinc bioavailability evaluation in the assessment of biofortification program effectiveness.
    Dias DM; Costa NMB; Nutti MR; Tako E; Martino HSD
    Crit Rev Food Sci Nutr; 2018; 58(13):2136-2146. PubMed ID: 28414527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Breeding for micronutrients in staple food crops from a human nutrition perspective.
    Welch RM; Graham RD
    J Exp Bot; 2004 Feb; 55(396):353-64. PubMed ID: 14739261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.