These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 27780479)

  • 1. Association of Airborne Microorganisms in the Operating Room With Implant Infections: A Randomized Controlled Trial.
    Darouiche RO; Green DM; Harrington MA; Ehni BL; Kougias P; Bechara CF; O'Connor DP
    Infect Control Hosp Epidemiol; 2017 Jan; 38(1):3-10. PubMed ID: 27780479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A localized laminar flow device decreases airborne particulates during shoulder arthroplasty: a randomized controlled trial.
    Morris BJ; Kiser CJ; Laughlin MS; Sheth MM; Dunn WR; Elkousy HA; Edwards TB
    J Shoulder Elbow Surg; 2021 Mar; 30(3):580-586. PubMed ID: 32949760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting bacterial populations based on airborne particulates: a study performed in nonlaminar flow operating rooms during joint arthroplasty surgery.
    Stocks GW; Self SD; Thompson B; Adame XA; O'Connor DP
    Am J Infect Control; 2010 Apr; 38(3):199-204. PubMed ID: 19913327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wound infections in patients undergoing total hip arthroplasty. Ultraviolet light for the control of airborne bacteria.
    Moggio M; Goldner JL; McCollum DE; Beissinger SF
    Arch Surg; 1979 Jul; 114(7):815-23. PubMed ID: 454176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction of Airborne Bacterial Burden in the OR by Installation of Unidirectional Displacement Airflow (UDF) Systems.
    Fischer S; Thieves M; Hirsch T; Fischer KD; Hubert H; Beppler S; Seipp HM
    Med Sci Monit; 2015 Aug; 21():2367-74. PubMed ID: 26269120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of measures to decrease intra-operative bacterial contamination in orthopaedic implant surgery.
    Knobben BA; van Horn JR; van der Mei HC; Busscher HJ
    J Hosp Infect; 2006 Feb; 62(2):174-80. PubMed ID: 16343691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of the environment of the operating suite in surgical wound infection.
    Ayliffe GA
    Rev Infect Dis; 1991; 13 Suppl 10():S800-4. PubMed ID: 1754788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laminar Air Flow Handling Systems in the Operating Room.
    Jain S; Reed M
    Surg Infect (Larchmt); 2019; 20(2):151-158. PubMed ID: 30596534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Traffic flow in the operating room: an explorative and descriptive study on air quality during orthopedic trauma implant surgery.
    Andersson AE; Bergh I; Karlsson J; Eriksson BI; Nilsson K
    Am J Infect Control; 2012 Oct; 40(8):750-5. PubMed ID: 22285652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of mobile laminar airflow units on airborne bacterial contamination during neurosurgical procedures.
    von Vogelsang AC; Förander P; Arvidsson M; Löwenhielm P
    J Hosp Infect; 2018 Jul; 99(3):271-278. PubMed ID: 29580895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directed air flow to reduce airborne particulate and bacterial contamination in the surgical field during total hip arthroplasty.
    Stocks GW; O'Connor DP; Self SD; Marcek GA; Thompson BL
    J Arthroplasty; 2011 Aug; 26(5):771-6. PubMed ID: 20851565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Importance of air quality and related factors in the prevention of infection in orthopaedic implant surgery.
    Gosden PE; MacGowan AP; Bannister GC
    J Hosp Infect; 1998 Jul; 39(3):173-80. PubMed ID: 9699136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of a portable HEPA-filtered body exhaust system on airborne microbial contamination in a conventional operating room.
    Bohn WW; McKinsey DS; Dykstra M; Koppe S
    Infect Control Hosp Epidemiol; 1996 Jul; 17(7):419-22. PubMed ID: 8839798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prevention of airborne infection in operating rooms.
    Howorth FH
    NATNEWS; 1987 Feb; 24(2):13-5. PubMed ID: 3645301
    [No Abstract]   [Full Text] [Related]  

  • 15. Shutting down operating theater ventilation when the theater is not in use: infection control and environmental aspects.
    Dettenkofer M; Scherrer M; Hoch V; Glaser H; Schwarzer G; Zentner J; Daschner ED
    Infect Control Hosp Epidemiol; 2003 Aug; 24(8):596-600. PubMed ID: 12940581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Traffic flow and microbial air contamination in operating rooms at a major teaching hospital in Ghana.
    Stauning MT; Bediako-Bowan A; Andersen LP; Opintan JA; Labi AK; Kurtzhals JAL; Bjerrum S
    J Hosp Infect; 2018 Jul; 99(3):263-270. PubMed ID: 29253624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors influencing microbial colonies in the air of operating rooms.
    Fu Shaw L; Chen IH; Chen CS; Wu HH; Lai LS; Chen YY; Wang F
    BMC Infect Dis; 2018 Jan; 18(1):4. PubMed ID: 29291707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Influence of Traffic, Area Location, and Other Factors on Operating Room Microbial Load.
    Taaffe K; Lee B; Ferrand Y; Fredendall L; San D; Salgado C; Shvorin D; Khoshkenar A; Reeves S;
    Infect Control Hosp Epidemiol; 2018 Apr; 39(4):391-397. PubMed ID: 29444738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Further bacteriological evaluation of the TOUL mobile system delivering ultra-clean air over surgical patients and instruments.
    Thore M; Burman LG
    J Hosp Infect; 2006 Jun; 63(2):185-92. PubMed ID: 16621144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decreasing airborne contamination levels in high-risk hospital areas using a novel mobile air-treatment unit.
    Bergeron V; Reboux G; Poirot JL; Laudinet N
    Infect Control Hosp Epidemiol; 2007 Oct; 28(10):1181-6. PubMed ID: 17828696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.