BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

585 related articles for article (PubMed ID: 27780618)

  • 21. Molecular modeling and in vitro approaches towards cholinesterase inhibitory effect of some natural xanthohumol, naringenin, and acyl phloroglucinol derivatives.
    Orhan IE; Jedrejek D; Senol FS; Salmas RE; Durdagi S; Kowalska I; Pecio L; Oleszek W
    Phytomedicine; 2018 Mar; 42():25-33. PubMed ID: 29655693
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highly functionalized 2-amino-4H-pyrans as potent cholinesterase inhibitors.
    Kumar RS; Almansour AI; Arumugam N; Al-Thamili DM; Basiri A; Kotresha D; Manohar TS; Venketesh S; Asad M; Asiri AM
    Bioorg Chem; 2018 Dec; 81():134-143. PubMed ID: 30121001
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis and in vitro evaluation of new derivatives of 2-substituted-6-fluorobenzo[d]thiazoles as cholinesterase inhibitors.
    Imramovský A; Pejchal V; Štěpánková Š; Vorčáková K; Jampílek J; Vančo J; Šimůnek P; Královec K; Brůčková L; Mandíková J; Trejtnar F
    Bioorg Med Chem; 2013 Apr; 21(7):1735-48. PubMed ID: 23462716
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis, Characterization and Cholinesterase Inhibition Studies of New Arylidene Aminothiazolylethanone Derivatives.
    Channar PA; Shah MS; Saeed A; Khan SU; Larik FA; Shabir G; Iqbal J
    Med Chem; 2017; 13(7):648-653. PubMed ID: 28266279
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oxidation at C-16 enhances butyrylcholinesterase inhibition in lupane triterpenoids.
    Castro MJ; Richmond V; Faraoni MB; Murray AP
    Bioorg Chem; 2018 Sep; 79():301-309. PubMed ID: 29793143
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis, molecular docking and biological evaluation of N,N-disubstituted 2-aminothiazolines as a new class of butyrylcholinesterase and carboxylesterase inhibitors.
    Makhaeva GF; Boltneva NP; Lushchekina SV; Serebryakova OG; Stupina TS; Terentiev AA; Serkov IV; Proshin AN; Bachurin SO; Richardson RJ
    Bioorg Med Chem; 2016 Mar; 24(5):1050-62. PubMed ID: 26827140
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis, molecular docking, and biological activity of 2-vinyl chromones: Toward selective butyrylcholinesterase inhibitors for potential Alzheimer's disease therapeutics.
    Makhaeva GF; Boltneva NP; Lushchekina SV; Rudakova EV; Serebryakova OG; Kulikova LN; Beloglazkin AA; Borisov RS; Richardson RJ
    Bioorg Med Chem; 2018 Sep; 26(16):4716-4725. PubMed ID: 30104121
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis and Biological Evaluation of New Cholinesterase Inhibitors for Alzheimer's Disease.
    Hussein W; Sağlık BN; Levent S; Korkut B; Ilgın S; Özkay Y; Kaplancıklı ZA
    Molecules; 2018 Aug; 23(8):. PubMed ID: 30110946
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pyridine sulfonamide as a small key organic molecule for the potential treatment of type-II diabetes mellitus and Alzheimer's disease: In vitro studies against yeast α-glucosidase, acetylcholinesterase and butyrylcholinesterase.
    Riaz S; Khan IU; Bajda M; Ashraf M; Qurat-Ul-Ain ; Shaukat A; Rehman TU; Mutahir S; Hussain S; Mustafa G; Yar M
    Bioorg Chem; 2015 Dec; 63():64-71. PubMed ID: 26451651
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis and biological evaluation of novel tacrine derivatives and tacrine-coumarin hybrids as cholinesterase inhibitors.
    Hamulakova S; Janovec L; Hrabinova M; Spilovska K; Korabecny J; Kristian P; Kuca K; Imrich J
    J Med Chem; 2014 Aug; 57(16):7073-84. PubMed ID: 25089370
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Triterpene-Based Carboxamides Act as Good Inhibitors of Butyrylcholinesterase.
    Loesche A; Kahnt M; Serbian I; Brandt W; Csuk R
    Molecules; 2019 Mar; 24(5):. PubMed ID: 30866589
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cholinesterase inhibitory activity versus aromatic core multiplicity: a facile green synthesis and molecular docking study of novel piperidone embedded thiazolopyrimidines.
    Basiri A; Murugaiyah V; Osman H; Kumar RS; Kia Y; Hooda A; Parsons RB
    Bioorg Med Chem; 2014 Jan; 22(2):906-16. PubMed ID: 24369842
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microwave assisted synthesis, cholinesterase enzymes inhibitory activities and molecular docking studies of new pyridopyrimidine derivatives.
    Basiri A; Murugaiyah V; Osman H; Kumar RS; Kia Y; Ali MA
    Bioorg Med Chem; 2013 Jun; 21(11):3022-31. PubMed ID: 23602518
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural modifications of 4-aryl-4-oxo-2-aminylbutanamides and their acetyl- and butyrylcholinesterase inhibitory activity. Investigation of AChE-ligand interactions by docking calculations and molecular dynamics simulations.
    Vitorović-Todorović MD; Koukoulitsa C; Juranić IO; Mandić LM; Drakulić BJ
    Eur J Med Chem; 2014 Jun; 81():158-75. PubMed ID: 24836068
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design and synthesis of N-substituted-2-hydroxyiminoacetamides and interactions with cholinesterases.
    Maraković N; Knežević A; Vinković V; Kovarik Z; Šinko G
    Chem Biol Interact; 2016 Nov; 259(Pt B):122-132. PubMed ID: 27238725
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exploring indole-based-thiadiazole derivatives as potent acetylcholinesterase and butyrylcholinesterase enzyme inhibitors.
    Taha M; Rahim F; Uddin N; Khan IU; Iqbal N; Anouar EH; Salahuddin M; Farooq RK; Gollapalli M; Khan KM; Zafar A
    Int J Biol Macromol; 2021 Oct; 188():1025-1036. PubMed ID: 34390751
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ionic liquid mediated synthesis of mono- and bis-spirooxindole-hexahydropyrrolidines as cholinesterase inhibitors and their molecular docking studies.
    Kia Y; Osman H; Kumar RS; Basiri A; Murugaiyah V
    Bioorg Med Chem; 2014 Feb; 22(4):1318-28. PubMed ID: 24461561
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis, biological activity and molecular modeling studies on 1H-benzimidazole derivatives as acetylcholinesterase inhibitors.
    Alpan AS; Parlar S; Carlino L; Tarikogullari AH; Alptüzün V; Güneş HS
    Bioorg Med Chem; 2013 Sep; 21(17):4928-37. PubMed ID: 23891231
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 1,2,3,4-Tetrahydrobenzo[h][1,6]naphthyridines as a new family of potent peripheral-to-midgorge-site inhibitors of acetylcholinesterase: synthesis, pharmacological evaluation and mechanistic studies.
    Di Pietro O; Viayna E; Vicente-García E; Bartolini M; Ramón R; Juárez-Jiménez J; Clos MV; Pérez B; Andrisano V; Luque FJ; Lavilla R; Muñoz-Torrero D
    Eur J Med Chem; 2014 Feb; 73():141-52. PubMed ID: 24389509
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis of physostigmine analogues and evaluation of their anticholinesterase activities.
    Zhan ZJ; Bian HL; Wang JW; Shan WG
    Bioorg Med Chem Lett; 2010 Mar; 20(5):1532-4. PubMed ID: 20144867
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.