BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 27780623)

  • 1. Bioaccumulation and toxicity assessment of irrigation water contaminated with boron (B) using duckweed (Lemna gibba L.) in a batch reactor system.
    Türker OC; Yakar A; Gür N
    J Hazard Mater; 2017 Feb; 324(Pt B):151-159. PubMed ID: 27780623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boron removal by the duckweed Lemna gibba: a potential method for the remediation of boron-polluted waters.
    Del-Campo Marín CM; Oron G
    Water Res; 2007 Dec; 41(20):4579-84. PubMed ID: 17643472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxicity assessment of boron (B) by Lemna minor L. and Lemna gibba L. and their possible use as model plants for ecological risk assessment of aquatic ecosystems with boron pollution.
    Gür N; Türker OC; Böcük H
    Chemosphere; 2016 Aug; 157():1-9. PubMed ID: 27192627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A combination method based on chitosan adsorption and duckweed (Lemna gibba L.) phytoremediation for boron (B) removal from drinking water.
    Türker OC; Baran T
    Int J Phytoremediation; 2018 Jan; 20(2):175-183. PubMed ID: 28692304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Boron (B) removal and bioelectricity captured from irrigation water using engineered duckweed-microbial fuel cell: effect of plant species and vegetation structure.
    Türker OC; Yakar A; Türe C; Saz Ç
    Environ Sci Pollut Res Int; 2019 Oct; 26(30):31522-31536. PubMed ID: 31478178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cost-effectiveness of boron (B) removal from irrigation water: an economic water treatment model (EWTM) for farmers to prevent boron toxicity.
    Türker OC; Yakar A; Türe C; Saz Ç
    Environ Sci Pollut Res Int; 2019 Jun; 26(18):18777-18789. PubMed ID: 31062239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cadmium removal by Lemna minor and Spirodela polyrhiza.
    Chaudhuri D; Majumder A; Misra AK; Bandyopadhyay K
    Int J Phytoremediation; 2014; 16(7-12):1119-32. PubMed ID: 24933906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bio-accumulation and toxicity of lead (Pb) in Lemna gibba L (duckweed).
    Sobrino AS; Miranda MG; Alvarez C; Quiroz A
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(1):107-10. PubMed ID: 20390849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of biosorption and phytoremediation of cadmium and methyl parathion, a case-study with live Lemna gibba and Lemna gibba powder.
    Halaimi FZ; Kellali Y; Couderchet M; Semsari S
    Ecotoxicol Environ Saf; 2014 Jul; 105():112-20. PubMed ID: 24815048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capacity of Lemna gibba L. (duckweed) for uranium and arsenic phytoremediation in mine tailing waters.
    Mkandawire M; Taubert B; Dudel EG
    Int J Phytoremediation; 2004; 6(4):347-62. PubMed ID: 15696706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioaccumulation of aluminum by Lemna gibba L. from secondary treated municipal wastewater effluents.
    Obek E; Sasmaz A
    Bull Environ Contam Toxicol; 2011 Feb; 86(2):217-20. PubMed ID: 21253699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a kinetic model for the removal of zinc using the aquatic macrophyte, Lemna gibba L.
    Khellaf N; Zerdaoui M
    Water Sci Technol; 2012; 66(5):953-7. PubMed ID: 22797221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation and application of an innovative method based on various chitosan composites and Lemna gibba for boron removal from drinking water.
    Türker OC; Baran T
    Carbohydr Polym; 2017 Jun; 166():209-218. PubMed ID: 28385225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytoremediation, recovery and toxic effects of ionic gadolinium using the free-floating plant Lemna gibba.
    Szabó S; Zavanyi G; Koleszár G; Del Castillo D; Oláh V; Braun M
    J Hazard Mater; 2023 Sep; 458():131930. PubMed ID: 37390689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accumulation of arsenic in Lemna gibba L. (duckweed) in tailing waters of two abandoned uranium mining sites in Saxony, Germany.
    Mkandawire M; Dudel EG
    Sci Total Environ; 2005 Jan; 336(1-3):81-9. PubMed ID: 15589251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arsenic uptake by Lemna minor in hydroponic system.
    Goswami C; Majumder A; Misra AK; Bandyopadhyay K
    Int J Phytoremediation; 2014; 16(7-12):1221-7. PubMed ID: 24933913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of circulation on wastewater treatment by Lemna gibba and Lemna minor (floating aquatic macrophytes).
    Demirezen Yilmaz D; Akbulut H
    Int J Phytoremediation; 2011; 13(10):970-84. PubMed ID: 21972565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth response of the duckweed Lemna gibba L. to copper and nickel phytoaccumulation.
    Khellaf N; Zerdaoui M
    Ecotoxicology; 2010 Nov; 19(8):1363-8. PubMed ID: 20680456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytoremediation of heavy metals from aqueous solutions by two aquatic macrophytes, Ceratophyllum demersum and Lemna gibba L.
    Abdallah MA
    Environ Technol; 2012; 33(13-15):1609-14. PubMed ID: 22988621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toxicity and removal of heavy metals (cadmium, copper, and zinc) by Lemna gibba.
    Megateli S; Semsari S; Couderchet M
    Ecotoxicol Environ Saf; 2009 Sep; 72(6):1774-80. PubMed ID: 19505721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.