BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 27780826)

  • 1. A graphical model approach visualizes regulatory relationships between genome-wide transcription factor binding profiles.
    Ng FSL; Ruau D; Wernisch L; Göttgens B
    Brief Bioinform; 2018 Jan; 19(1):162-173. PubMed ID: 27780826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An efficient method to transcription factor binding sites imputation via simultaneous completion of multiple matrices with positional consistency.
    Guo WL; Huang DS
    Mol Biosyst; 2017 Aug; 13(9):1827-1837. PubMed ID: 28718849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving analysis of transcription factor binding sites within ChIP-Seq data based on topological motif enrichment.
    Worsley Hunt R; Mathelier A; Del Peso L; Wasserman WW
    BMC Genomics; 2014 Jun; 15(1):472. PubMed ID: 24927817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A map of direct TF-DNA interactions in the human genome.
    Gheorghe M; Sandve GK; Khan A; Chèneby J; Ballester B; Mathelier A
    Nucleic Acids Res; 2019 Feb; 47(4):e21. PubMed ID: 30517703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inferring functional transcription factor-gene binding pairs by integrating transcription factor binding data with transcription factor knockout data.
    Yang TH; Wu WS
    BMC Syst Biol; 2013; 7 Suppl 6(Suppl 6):S13. PubMed ID: 24565265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A biophysical model for analysis of transcription factor interaction and binding site arrangement from genome-wide binding data.
    He X; Chen CC; Hong F; Fang F; Sinha S; Ng HH; Zhong S
    PLoS One; 2009 Dec; 4(12):e8155. PubMed ID: 19956545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An improved ChIP-seq peak detection system for simultaneously identifying post-translational modified transcription factors by combinatorial fusion, using SUMOylation as an example.
    Cheng CY; Chu CH; Hsu HW; Hsu FR; Tang CY; Wang WC; Kung HJ; Chang PC
    BMC Genomics; 2014; 15 Suppl 1(Suppl 1):S1. PubMed ID: 24564277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistics of protein-DNA binding and the total number of binding sites for a transcription factor in the mammalian genome.
    Kuznetsov VA; Singh O; Jenjaroenpun P
    BMC Genomics; 2010 Feb; 11 Suppl 1(Suppl 1):S12. PubMed ID: 20158869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DiNeR: a Differential graphical model for analysis of co-regulation Network Rewiring.
    Zhang J; Liu J; Lee D; Lou S; Chen Z; Gürsoy G; Gerstein M
    BMC Bioinformatics; 2020 Jul; 21(1):281. PubMed ID: 32615918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. COPS: detecting co-occurrence and spatial arrangement of transcription factor binding motifs in genome-wide datasets.
    Ha N; Polychronidou M; Lohmann I
    PLoS One; 2012; 7(12):e52055. PubMed ID: 23272209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated genome-scale analysis of the transcriptional regulatory landscape in a blood stem/progenitor cell model.
    Wilson NK; Schoenfelder S; Hannah R; Sánchez Castillo M; Schütte J; Ladopoulos V; Mitchelmore J; Goode DK; Calero-Nieto FJ; Moignard V; Wilkinson AC; Jimenez-Madrid I; Kinston S; Spivakov M; Fraser P; Göttgens B
    Blood; 2016 Mar; 127(13):e12-23. PubMed ID: 26809507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A graphical modelling approach to the dissection of highly correlated transcription factor binding site profiles.
    Stojnic R; Fu AQ; Adryan B
    PLoS Comput Biol; 2012; 8(11):e1002725. PubMed ID: 23144600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene set control analysis predicts hematopoietic control mechanisms from genome-wide transcription factor binding data.
    Joshi A; Hannah R; Diamanti E; Göttgens B
    Exp Hematol; 2013 Apr; 41(4):354-66.e14. PubMed ID: 23220237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-targeted transcription factors motifs are a systemic component of ChIP-seq datasets.
    Worsley Hunt R; Wasserman WW
    Genome Biol; 2014 Jul; 15(7):412. PubMed ID: 25070602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcription factor-binding k-mer analysis clarifies the cell type dependency of binding specificities and cis-regulatory SNPs in humans.
    Tahara S; Tsuchiya T; Matsumoto H; Ozaki H
    BMC Genomics; 2023 Oct; 24(1):597. PubMed ID: 37805453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptional network control of normal and leukaemic haematopoiesis.
    Sive JI; Göttgens B
    Exp Cell Res; 2014 Dec; 329(2):255-64. PubMed ID: 25014893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. hTFtarget: A Comprehensive Database for Regulations of Human Transcription Factors and Their Targets.
    Zhang Q; Liu W; Zhang HM; Xie GY; Miao YR; Xia M; Guo AY
    Genomics Proteomics Bioinformatics; 2020 Apr; 18(2):120-128. PubMed ID: 32858223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ChIPXpress: using publicly available gene expression data to improve ChIP-seq and ChIP-chip target gene ranking.
    Wu G; Ji H
    BMC Bioinformatics; 2013 Jun; 14():188. PubMed ID: 23758851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing the model transferability for prediction of transcription factor binding sites based on chromatin accessibility.
    Liu S; Zibetti C; Wan J; Wang G; Blackshaw S; Qian J
    BMC Bioinformatics; 2017 Jul; 18(1):355. PubMed ID: 28750606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational identification of diverse mechanisms underlying transcription factor-DNA occupancy.
    Cheng Q; Kazemian M; Pham H; Blatti C; Celniker SE; Wolfe SA; Brodsky MH; Sinha S
    PLoS Genet; 2013; 9(8):e1003571. PubMed ID: 23935523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.