These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 27780951)
21. Characterization of a thermo-alkali-stable laccase from Bacillus subtilis cjp3 and its application in dyes decolorization. Qiao W; Chu J; Ding S; Song X; Yu L J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Jul; 52(8):710-717. PubMed ID: 28358283 [TBL] [Abstract][Full Text] [Related]
22. CotA of Bacillus subtilis is a copper-dependent laccase. Hullo MF; Moszer I; Danchin A; Martin-Verstraete I J Bacteriol; 2001 Sep; 183(18):5426-30. PubMed ID: 11514528 [TBL] [Abstract][Full Text] [Related]
23. Spore-coat laccase CotA from Bacillus subtilis: crystallization and preliminary X-ray characterization by the MAD method. Enguita FJ; Matias PM; Martins LO; Plácido D; Henriques AO; Carrondo MA Acta Crystallogr D Biol Crystallogr; 2002 Sep; 58(Pt 9):1490-3. PubMed ID: 12198312 [TBL] [Abstract][Full Text] [Related]
24. Molecular cloning, characterization, and dye-decolorizing ability of a temperature- and pH-stable laccase from Bacillus subtilis X1. Guan ZB; Zhang N; Song CM; Zhou W; Zhou LX; Zhao H; Xu CW; Cai YJ; Liao XR Appl Biochem Biotechnol; 2014 Feb; 172(3):1147-57. PubMed ID: 24218183 [TBL] [Abstract][Full Text] [Related]
25. Perturbations of the T1 copper site in the CotA laccase from Bacillus subtilis: structural, biochemical, enzymatic and stability studies. Durão P; Bento I; Fernandes AT; Melo EP; Lindley PF; Martins LO J Biol Inorg Chem; 2006 Jun; 11(4):514-26. PubMed ID: 16680453 [TBL] [Abstract][Full Text] [Related]
26. Narrowing laccase substrate specificity using active site saturation mutagenesis. Gupta N; Farinas ET Comb Chem High Throughput Screen; 2009 Mar; 12(3):269-74. PubMed ID: 19275532 [TBL] [Abstract][Full Text] [Related]
27. Activity enhancement of CotA laccase by hydrophilic engineering, histidine tag optimization and static culture. Li L; Xie T; Liu Z; Feng H; Wang G Protein Eng Des Sel; 2018 Jan; 31(1):1-5. PubMed ID: 29301022 [TBL] [Abstract][Full Text] [Related]
28. A simple strategy for extracellular production of CotA laccase in Escherichia coli and decolorization of simulated textile effluent by recombinant laccase. Wang TN; Zhao M Appl Microbiol Biotechnol; 2017 Jan; 101(2):685-696. PubMed ID: 27738721 [TBL] [Abstract][Full Text] [Related]
29. Enhanced catalytic efficiency of CotA-laccase by DNA shuffling. Ouyang F; Zhao M Bioengineered; 2019 Dec; 10(1):182-189. PubMed ID: 31142180 [TBL] [Abstract][Full Text] [Related]
31. Oxidation of polycyclic aromatic hydrocarbons using Bacillus subtilis CotA with high laccase activity and copper independence. Zeng J; Zhu Q; Wu Y; Lin X Chemosphere; 2016 Apr; 148():1-7. PubMed ID: 26784443 [TBL] [Abstract][Full Text] [Related]
32. Efficient secretory production of CotA-laccase and its application in the decolorization and detoxification of industrial textile wastewater. Guan ZB; Shui Y; Song CM; Zhang N; Cai YJ; Liao XR Environ Sci Pollut Res Int; 2015 Jun; 22(12):9515-23. PubMed ID: 25847445 [TBL] [Abstract][Full Text] [Related]
33. Substrate and dioxygen binding to the endospore coat laccase from Bacillus subtilis. Enguita FJ; Marçal D; Martins LO; Grenha R; Henriques AO; Lindley PF; Carrondo MA J Biol Chem; 2004 May; 279(22):23472-6. PubMed ID: 14764581 [TBL] [Abstract][Full Text] [Related]
34. An effective enzymatic assay for pH selectively measuring direct and total bilirubin concentration by using of CotA. Zhang C; Zhu L; Zhang J; Wang W; Zeng Y; You S; Qi W; Su R; He Z Biochem Biophys Res Commun; 2021 Apr; 547():192-197. PubMed ID: 33618226 [TBL] [Abstract][Full Text] [Related]
35. Crystal structure of a bacterial endospore coat component. A laccase with enhanced thermostability properties. Enguita FJ; Martins LO; Henriques AO; Carrondo MA J Biol Chem; 2003 May; 278(21):19416-25. PubMed ID: 12637519 [TBL] [Abstract][Full Text] [Related]
36. The removal of a disulfide bridge in CotA-laccase changes the slower motion dynamics involved in copper binding but has no effect on the thermodynamic stability. Fernandes AT; Pereira MM; Silva CS; Lindley PF; Bento I; Melo EP; Martins LO J Biol Inorg Chem; 2011 Apr; 16(4):641-51. PubMed ID: 21369750 [TBL] [Abstract][Full Text] [Related]
37. Synthesis of Azobenzene Dyes Mediated by CotA Laccase. Sousa AC; Baptista SR; Martins LO; Robalo MP Chem Asian J; 2019 Jan; 14(1):187-193. PubMed ID: 30447059 [TBL] [Abstract][Full Text] [Related]
38. Mimicking the bioelectrocatalytic function of recombinant CotA laccase through electrostatically self-assembled bioconjugates. Alba-Molina D; Rodríguez-Padrón D; Puente-Santiago AR; Giner-Casares JJ; Martín-Romero MT; Camacho L; Martins LO; Muñoz-Batista MJ; Cano M; Luque R Nanoscale; 2019 Jan; 11(4):1549-1554. PubMed ID: 30629067 [TBL] [Abstract][Full Text] [Related]
39. The role of Asp116 in the reductive cleavage of dioxygen to water in CotA laccase: assistance during the proton-transfer mechanism. Silva CS; Damas JM; Chen Z; Brissos V; Martins LO; Soares CM; Lindley PF; Bento I Acta Crystallogr D Biol Crystallogr; 2012 Feb; 68(Pt 2):186-93. PubMed ID: 22281748 [TBL] [Abstract][Full Text] [Related]
40. Reaction of substituted phenols with thermostable laccase bound to Bacillus subtilis spores. Hirose J; Nasu M; Yokoi H Biotechnol Lett; 2003 Oct; 25(19):1609-12. PubMed ID: 14584915 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]