These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 27781324)

  • 1. Tracing trajectories of audio-visual learning in the infant brain.
    Kersey AJ; Emberson LL
    Dev Sci; 2017 Nov; 20(6):. PubMed ID: 27781324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using fNIRS to examine occipital and temporal responses to stimulus repetition in young infants: Evidence of selective frontal cortex involvement.
    Emberson LL; Cannon G; Palmeri H; Richards JE; Aslin RN
    Dev Cogn Neurosci; 2017 Feb; 23():26-38. PubMed ID: 28012401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The emergence of top-down, sensory prediction during learning in infancy: A comparison of full-term and preterm infants.
    Boldin AM; Geiger R; Emberson LL
    Dev Psychobiol; 2018 Jul; 60(5):544-556. PubMed ID: 29687654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. General to specific development of functional activation in the cerebral cortexes of 2- to 3-month-old infants.
    Watanabe H; Homae F; Taga G
    Neuroimage; 2010 May; 50(4):1536-44. PubMed ID: 20109561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of brain activation during learning of syllable-symbol paired associations.
    Hämäläinen JA; Parviainen T; Hsu YF; Salmelin R
    Neuropsychologia; 2019 Jun; 129():93-103. PubMed ID: 30930303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Top-down modulation in the infant brain: Learning-induced expectations rapidly affect the sensory cortex at 6 months.
    Emberson LL; Richards JE; Aslin RN
    Proc Natl Acad Sci U S A; 2015 Aug; 112(31):9585-90. PubMed ID: 26195772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hemodynamic responses to visual stimulation in occipital and frontal cortex of newborn infants: a near-infrared optical topography study.
    Taga G; Asakawa K; Hirasawa K; Konishi Y
    Early Hum Dev; 2003 Dec; 75 Suppl():S203-10. PubMed ID: 14693406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functionally segregated neural substrates for arbitrary audiovisual paired-association learning.
    Tanabe HC; Honda M; Sadato N
    J Neurosci; 2005 Jul; 25(27):6409-18. PubMed ID: 16000632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmental changes in cortical sensory processing during wakefulness and sleep.
    Taga G; Watanabe H; Homae F
    Neuroimage; 2018 Sep; 178():519-530. PubMed ID: 29860079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of neural interactions explains the activation of occipital cortex by an auditory stimulus.
    McIntosh AR; Cabeza RE; Lobaugh NJ
    J Neurophysiol; 1998 Nov; 80(5):2790-6. PubMed ID: 9819283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The predictive value of changes in effective connectivity for human learning.
    Büchel C; Coull JT; Friston KJ
    Science; 1999 Mar; 283(5407):1538-41. PubMed ID: 10066177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hemodynamic response to featural changes in the occipital and inferior temporal cortex in infants: a preliminary methodological exploration.
    Wilcox T; Bortfeld H; Woods R; Wruck E; Boas DA
    Dev Sci; 2008 May; 11(3):361-70. PubMed ID: 18466370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hemispheric Asymmetries in Repetition Enhancement and Suppression Effects in the Newborn Brain.
    Bouchon C; Nazzi T; Gervain J
    PLoS One; 2015; 10(10):e0140160. PubMed ID: 26485434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dual role for prediction error in associative learning.
    den Ouden HE; Friston KJ; Daw ND; McIntosh AR; Stephan KE
    Cereb Cortex; 2009 May; 19(5):1175-85. PubMed ID: 18820290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrating associative learning signals across the brain.
    Suzuki WA
    Hippocampus; 2007; 17(9):842-50. PubMed ID: 17598153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bimodal emotion congruency is critical to preverbal infants' abstract rule learning.
    Tsui AS; Ma YK; Ho A; Chow HM; Tseng CH
    Dev Sci; 2016 May; 19(3):382-93. PubMed ID: 26280911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of statistical learning on internal stimulus representations: predictable items are enhanced even when not predicted.
    Barakat BK; Seitz AR; Shams L
    Cognition; 2013 Nov; 129(2):205-11. PubMed ID: 23942346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emotional Processing in the First 2 Years of Life: A Review of Near-Infrared Spectroscopy Studies.
    Maria A; Shekhar S; Nissilä I; Kotilahti K; Huotilainen M; Karlsson L; Karlsson H; Tuulari JJ
    J Neuroimaging; 2018 Sep; 28(5):441-454. PubMed ID: 29883005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation and deactivation in response to visual stimulation in the occipital cortex of 6-month-old human infants.
    Watanabe H; Homae F; Taga G
    Dev Psychobiol; 2012 Jan; 54(1):1-15. PubMed ID: 21594872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional activation of the infant cortex during object processing.
    Wilcox T; Stubbs J; Hirshkowitz A; Boas DA
    Neuroimage; 2012 Sep; 62(3):1833-40. PubMed ID: 22634218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.