These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. A multiple timescales approach to bridging spiking- and population-level dynamics. Park Y; Ermentrout GB Chaos; 2018 Aug; 28(8):083123. PubMed ID: 30180602 [TBL] [Abstract][Full Text] [Related]
5. The role of network structure and time delay in a metapopulation Wilson--Cowan model. Conti F; Van Gorder RA J Theor Biol; 2019 Sep; 477():1-13. PubMed ID: 31181240 [TBL] [Abstract][Full Text] [Related]
6. Dynamics of a population of oscillatory and excitable elements. O'Keeffe KP; Strogatz SH Phys Rev E; 2016 Jun; 93(6):062203. PubMed ID: 27415251 [TBL] [Abstract][Full Text] [Related]
7. Frequency assortativity can induce chaos in oscillator networks. Skardal PS; Restrepo JG; Ott E Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):060902. PubMed ID: 26172652 [TBL] [Abstract][Full Text] [Related]
8. Exact finite-dimensional reduction for a population of noisy oscillators and its link to Ott-Antonsen and Watanabe-Strogatz theories. Cestnik R; Pikovsky A Chaos; 2022 Nov; 32(11):113126. PubMed ID: 36456354 [TBL] [Abstract][Full Text] [Related]
9. Cooperative dynamics in coupled systems of fast and slow phase oscillators. Sakaguchi H; Okita T Phys Rev E; 2016 Feb; 93(2):022212. PubMed ID: 26986336 [TBL] [Abstract][Full Text] [Related]
10. A Linear Analysis of Coupled Wilson-Cowan Neuronal Populations. Neves LL; Monteiro LH Comput Intell Neurosci; 2016; 2016():8939218. PubMed ID: 27725829 [TBL] [Abstract][Full Text] [Related]
11. Bumps in Small-World Networks. Laing CR Front Comput Neurosci; 2016; 10():53. PubMed ID: 27378897 [TBL] [Abstract][Full Text] [Related]
12. Beyond Wilson-Cowan dynamics: oscillations and chaos without inhibition. Painchaud V; Doyon N; Desrosiers P Biol Cybern; 2022 Dec; 116(5-6):527-543. PubMed ID: 36063212 [TBL] [Abstract][Full Text] [Related]
13. Wilson-Cowan Equations for Neocortical Dynamics. Cowan JD; Neuman J; van Drongelen W J Math Neurosci; 2016 Dec; 6(1):1. PubMed ID: 26728012 [TBL] [Abstract][Full Text] [Related]
14. The study of the dynamics of the order parameter of coupled oscillators in the Ott-Antonsen scheme for generic frequency distributions. Campa A Chaos; 2022 Aug; 32(8):083104. PubMed ID: 36049926 [TBL] [Abstract][Full Text] [Related]
15. Collective mode reductions for populations of coupled noisy oscillators. Goldobin DS; Tyulkina IV; Klimenko LS; Pikovsky A Chaos; 2018 Oct; 28(10):101101. PubMed ID: 30384615 [TBL] [Abstract][Full Text] [Related]
17. Collective in-plane magnetization in a two-dimensional XY macrospin system within the framework of generalized Ott-Antonsen theory. Tyulkina IV; Goldobin DS; Klimenko LS; Poperechny IS; Raikher YL Philos Trans A Math Phys Eng Sci; 2020 May; 378(2171):20190259. PubMed ID: 32279627 [TBL] [Abstract][Full Text] [Related]
18. Collective Activity Bursting in a Population of Excitable Units Adaptively Coupled to a Pool of Resources. Franović I; Eydam S; Yanchuk S; Berner R Front Netw Physiol; 2022; 2():841829. PubMed ID: 36926089 [TBL] [Abstract][Full Text] [Related]
19. Collective dynamics of identical phase oscillators with high-order coupling. Xu C; Xiang H; Gao J; Zheng Z Sci Rep; 2016 Aug; 6():31133. PubMed ID: 27491401 [TBL] [Abstract][Full Text] [Related]
20. Diversity of dynamical behaviors due to initial conditions: Extension of the Ott-Antonsen ansatz for identical Kuramoto-Sakaguchi phase oscillators. Ichiki A; Okumura K Phys Rev E; 2020 Feb; 101(2-1):022211. PubMed ID: 32168625 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]