These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 27781463)
1. Optimal synchronization of directed complex networks. Skardal PS; Taylor D; Sun J Chaos; 2016 Sep; 26(9):094807. PubMed ID: 27781463 [TBL] [Abstract][Full Text] [Related]
2. Optimal synchronization of complex networks. Skardal PS; Taylor D; Sun J Phys Rev Lett; 2014 Oct; 113(14):144101. PubMed ID: 25325646 [TBL] [Abstract][Full Text] [Related]
3. Effects of degree correlations on the explosive synchronization of scale-free networks. Sendiña-Nadal I; Leyva I; Navas A; Villacorta-Atienza JA; Almendral JA; Wang Z; Boccaletti S Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032811. PubMed ID: 25871161 [TBL] [Abstract][Full Text] [Related]
4. Optimal phase synchronization in networks of phase-coherent chaotic oscillators. Skardal PS; Sevilla-Escoboza R; Vera-Ávila VP; Buldú JM Chaos; 2017 Jan; 27(1):013111. PubMed ID: 28147498 [TBL] [Abstract][Full Text] [Related]
5. Adding connections can hinder network synchronization of time-delayed oscillators. Hart JD; Pade JP; Pereira T; Murphy TE; Roy R Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022804. PubMed ID: 26382451 [TBL] [Abstract][Full Text] [Related]
6. SYNCHRONIZATION OF HETEROGENEOUS OSCILLATORS UNDER NETWORK MODIFICATIONS: PERTURBATION AND OPTIMIZATION OF THE SYNCHRONY ALIGNMENT FUNCTION. Taylor D; Skardal PS; Sun J SIAM J Appl Math; 2016; 76(5):1984-2008. PubMed ID: 27872501 [TBL] [Abstract][Full Text] [Related]
7. Criterion for the emergence of explosive synchronization transitions in networks of phase oscillators. Zhu L; Tian L; Shi D Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042921. PubMed ID: 24229263 [TBL] [Abstract][Full Text] [Related]
8. Amplitude death in networks of delay-coupled delay oscillators. Höfener JM; Sethia GC; Gross T Philos Trans A Math Phys Eng Sci; 2013 Sep; 371(1999):20120462. PubMed ID: 23960220 [TBL] [Abstract][Full Text] [Related]
9. Network structure, topology, and dynamics in generalized models of synchronization. Lerman K; Ghosh R Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026108. PubMed ID: 23005826 [TBL] [Abstract][Full Text] [Related]
10. Inferring the physical connectivity of complex networks from their functional dynamics. Ta HX; Yoon CN; Holm L; Han SK BMC Syst Biol; 2010 May; 4():70. PubMed ID: 20500902 [TBL] [Abstract][Full Text] [Related]
11. Hamiltonian mean field model: Effect of network structure on synchronization dynamics. Virkar YS; Restrepo JG; Meiss JD Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052802. PubMed ID: 26651739 [TBL] [Abstract][Full Text] [Related]
12. Disorder induces explosive synchronization. Skardal PS; Arenas A Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062811. PubMed ID: 25019837 [TBL] [Abstract][Full Text] [Related]
13. On the topology of synchrony optimized networks of a Kuramoto-model with non-identical oscillators. Kelly D; Gottwald GA Chaos; 2011 Jun; 21(2):025110. PubMed ID: 21721788 [TBL] [Abstract][Full Text] [Related]
14. Synchronization in large directed networks of coupled phase oscillators. Restrepo JG; Ott E; Hunt BR Chaos; 2006 Mar; 16(1):015107. PubMed ID: 16599773 [TBL] [Abstract][Full Text] [Related]
15. Local synchronization in complex networks of coupled oscillators. Stout J; Whiteway M; Ott E; Girvan M; Antonsen TM Chaos; 2011 Jun; 21(2):025109. PubMed ID: 21721787 [TBL] [Abstract][Full Text] [Related]
16. Explosive synchronization transitions in complex neural networks. Chen H; He G; Huang F; Shen C; Hou Z Chaos; 2013 Sep; 23(3):033124. PubMed ID: 24089960 [TBL] [Abstract][Full Text] [Related]
17. Exact explosive synchronization transitions in Kuramoto oscillators with time-delayed coupling. Wu H; Kang L; Liu Z; Dhamala M Sci Rep; 2018 Oct; 8(1):15521. PubMed ID: 30341395 [TBL] [Abstract][Full Text] [Related]
18. Effect of node-degree correlation on synchronization of identical pulse-coupled oscillators. LaMar MD; Smith GD Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046206. PubMed ID: 20481806 [TBL] [Abstract][Full Text] [Related]
19. Optimizing synchrony with a minimal coupling strength of coupled phase oscillators on complex networks based on desynchronous clustering. Chen W; Gao J; Lan Y; Xiao J Phys Rev E; 2022 Apr; 105(4-1):044302. PubMed ID: 35590563 [TBL] [Abstract][Full Text] [Related]
20. Effective centrality and explosive synchronization in complex networks. Navas A; Villacorta-Atienza JA; Leyva I; Almendral JA; Sendiña-Nadal I; Boccaletti S Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062820. PubMed ID: 26764757 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]