BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 27781948)

  • 1. Plant Anti-cancer Agents and their Biotechnological Production in Plant Cell Biofactories.
    Lalaleo L; Khojasteh A; Fattahi M; Bonfill M; Cusido RM; Palazon J
    Curr Med Chem; 2016; 23(39):4418-4441. PubMed ID: 27781948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anticancer lignans--from discovery to biotechnology.
    Ionkova I
    Mini Rev Med Chem; 2011 Sep; 11(10):843-56. PubMed ID: 21762103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biotechnological Production of Pharmaceuticals and Biopharmaceuticals in Plant Cell and Organ Cultures.
    Hidalgo D; Sanchez R; Lalaleo L; Bonfill M; Corchete P; Palazon J
    Curr Med Chem; 2018; 25(30):3577-3596. PubMed ID: 29521202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anticancer potential of rosmarinic acid and its improved production through biotechnological interventions and functional genomics.
    Swamy MK; Sinniah UR; Ghasemzadeh A
    Appl Microbiol Biotechnol; 2018 Sep; 102(18):7775-7793. PubMed ID: 30022261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biotechnological approaches to the production of plant-derived promising anticancer agents: An update and overview.
    Changxing L; Galani S; Hassan FU; Rashid Z; Naveed M; Fang D; Ashraf A; Qi W; Arif A; Saeed M; Chishti AA; Jianhua L
    Biomed Pharmacother; 2020 Dec; 132():110918. PubMed ID: 33254434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioprocessing of plant in vitro systems for the mass production of pharmaceutically important metabolites: paclitaxel and its derivatives.
    Onrubia M; Cusidó RM; Ramirez K; Hernández-Vázquez L; Moyano E; Bonfill M; Palazon J
    Curr Med Chem; 2013; 20(7):880-91. PubMed ID: 23210777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biotechnological aspects of the production of the anticancer drug podophyllotoxin.
    Farkya S; Bisaria VS; Srivastava AK
    Appl Microbiol Biotechnol; 2004 Oct; 65(5):504-19. PubMed ID: 15378293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Green (cell) factories for advanced production of plant secondary metabolites.
    Marchev AS; Yordanova ZP; Georgiev MI
    Crit Rev Biotechnol; 2020 Jun; 40(4):443-458. PubMed ID: 32178548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biotechnologically produced secondary plant metabolites for cancer treatment and prevention.
    Korkina L; Kostyuk V
    Curr Pharm Biotechnol; 2012 Jan; 13(1):265-75. PubMed ID: 21466424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant cells as pharmaceutical factories.
    Rischer H; Häkkinen ST; Ritala A; Seppänen-Laakso T; Miralpeix B; Capell T; Christou P; Oksman-Caldentey KM
    Curr Pharm Des; 2013; 19(31):5640-60. PubMed ID: 23394561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Catharanthus alkaloids: pharmacognosy and biotechnology.
    van Der Heijden R; Jacobs DI; Snoeijer W; Hallard D; Verpoorte R
    Curr Med Chem; 2004 Mar; 11(5):607-28. PubMed ID: 15032608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specialized Plant Metabolism Characteristics and Impact on Target Molecule Biotechnological Production.
    Matsuura HN; Malik S; de Costa F; Yousefzadi M; Mirjalili MH; Arroo R; Bhambra AS; Strnad M; Bonfill M; Fett-Neto AG
    Mol Biotechnol; 2018 Feb; 60(2):169-183. PubMed ID: 29290031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hosting the plant cells in vitro: recent trends in bioreactors.
    Georgiev MI; Eibl R; Zhong JJ
    Appl Microbiol Biotechnol; 2013 May; 97(9):3787-800. PubMed ID: 23504061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison between tumors in plants and human beings: Mechanisms of tumor development and therapy with secondary plant metabolites.
    Ullrich CI; Aloni R; Saeed MEM; Ullrich W; Efferth T
    Phytomedicine; 2019 Nov; 64():153081. PubMed ID: 31568956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elicitation, an Effective Strategy for the Biotechnological Production of Bioactive High-Added Value Compounds in Plant Cell Factories.
    Ramirez-Estrada K; Vidal-Limon H; Hidalgo D; Moyano E; Golenioswki M; Cusidó RM; Palazon J
    Molecules; 2016 Feb; 21(2):182. PubMed ID: 26848649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant-based anticancer molecules: a chemical and biological profile of some important leads.
    Srivastava V; Negi AS; Kumar JK; Gupta MM; Khanuja SP
    Bioorg Med Chem; 2005 Nov; 13(21):5892-908. PubMed ID: 16129603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of bioactive plant secondary metabolites through in vitro technologies-status and outlook.
    Wawrosch C; Zotchev SB
    Appl Microbiol Biotechnol; 2021 Sep; 105(18):6649-6668. PubMed ID: 34468803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rosmarinic acid and its derivatives: biotechnology and applications.
    Bulgakov VP; Inyushkina YV; Fedoreyev SA
    Crit Rev Biotechnol; 2012 Sep; 32(3):203-17. PubMed ID: 21838541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-volatile natural products in plant glandular trichomes: chemistry, biological activities and biosynthesis.
    Liu Y; Jing SX; Luo SH; Li SH
    Nat Prod Rep; 2019 Apr; 36(4):626-665. PubMed ID: 30468448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of plant cell and tissue culture for the production of phytochemicals in medicinal plants.
    Pant B
    Adv Exp Med Biol; 2014; 808():25-39. PubMed ID: 24595608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.