BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

532 related articles for article (PubMed ID: 27781961)

  • 41. Whole Blueberry and Isolated Polyphenol-Rich Fractions Modulate Specific Gut Microbes in an In Vitro Colon Model and in a Pilot Study in Human Consumers.
    Ntemiri A; Ghosh TS; Gheller ME; Tran TTT; Blum JE; Pellanda P; Vlckova K; Neto MC; Howell A; Thalacker-Mercer A; O'Toole PW
    Nutrients; 2020 Sep; 12(9):. PubMed ID: 32932733
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Interactions between dietary flavonoids and the gut microbiome: a comprehensive review.
    Baky MH; Elshahed M; Wessjohann L; Farag MA
    Br J Nutr; 2022 Aug; 128(4):577-591. PubMed ID: 34511152
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bidirectional Interactions between Green Tea (GT) Polyphenols and Human Gut Bacteria.
    Choi SR; Lee H; Singh D; Cho D; Chung JO; Roh JH; Kim WG; Lee CH
    J Microbiol Biotechnol; 2023 Oct; 33(10):1317-1328. PubMed ID: 37435870
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ellagitannins, Gallotannins and their Metabolites- The Contribution to the Anti-Inflammatory Effect of Food Products and Medicinal Plants.
    Kiss AK; Piwowarski JP
    Curr Med Chem; 2018; 25(37):4946-4967. PubMed ID: 27655073
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Role of Intestinal Microbiota in the Bioavailability and Physiological Functions of Dietary Polyphenols.
    Kawabata K; Yoshioka Y; Terao J
    Molecules; 2019 Jan; 24(2):. PubMed ID: 30669635
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Green tea polyphenols modify gut-microbiota dependent metabolisms of energy, bile constituents and micronutrients in female Sprague-Dawley rats.
    Zhou J; Tang L; Shen CL; Wang JS
    J Nutr Biochem; 2018 Nov; 61():68-81. PubMed ID: 30189365
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Impact of Grain Sorghum Polyphenols on Microbiota of Normal Weight and Overweight/Obese Subjects during In Vitro Fecal Fermentation.
    Ashley D; Marasini D; Brownmiller C; Lee JA; Carbonero F; Lee SO
    Nutrients; 2019 Jan; 11(2):. PubMed ID: 30678168
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fecal microbial metabolism of polyphenols and its effects on human gut microbiota.
    Parkar SG; Trower TM; Stevenson DE
    Anaerobe; 2013 Oct; 23():12-9. PubMed ID: 23916722
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Could the gut microbiota reconcile the oral bioavailability conundrum of traditional herbs?
    Chen F; Wen Q; Jiang J; Li HL; Tan YF; Li YH; Zeng NK
    J Ethnopharmacol; 2016 Feb; 179():253-64. PubMed ID: 26723469
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Interaction of Polyphenols and the Gut Microbiota in Neurodegenerative Diseases.
    Zhang Y; Yu W; Zhang L; Wang M; Chang W
    Nutrients; 2022 Dec; 14(24):. PubMed ID: 36558531
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Phytochemicals as modifiers of gut microbial communities.
    Dingeo G; Brito A; Samouda H; Iddir M; La Frano MR; Bohn T
    Food Funct; 2020 Oct; 11(10):8444-8471. PubMed ID: 32996966
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Green Tea and Its Relation to Human Gut Microbiome.
    Pérez-Burillo S; Navajas-Porras B; López-Maldonado A; Hinojosa-Nogueira D; Pastoriza S; Rufián-Henares JÁ
    Molecules; 2021 Jun; 26(13):. PubMed ID: 34206736
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Role of the Gut Microbiota in the Metabolism of Polyphenols as Characterized by Gnotobiotic Mice.
    Pasinetti GM; Singh R; Westfall S; Herman F; Faith J; Ho L
    J Alzheimers Dis; 2018; 63(2):409-421. PubMed ID: 29660942
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Red Wine Consumption Associated With Increased Gut Microbiota α-Diversity in 3 Independent Cohorts.
    Le Roy CI; Wells PM; Si J; Raes J; Bell JT; Spector TD
    Gastroenterology; 2020 Jan; 158(1):270-272.e2. PubMed ID: 31472153
    [No Abstract]   [Full Text] [Related]  

  • 55. The gut microbiota composition affects dietary polyphenols-mediated cognitive resilience in mice by modulating the bioavailability of phenolic acids.
    Frolinger T; Sims S; Smith C; Wang J; Cheng H; Faith J; Ho L; Hao K; Pasinetti GM
    Sci Rep; 2019 Mar; 9(1):3546. PubMed ID: 30837576
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Current evidence linking diet to gut microbiota and brain development and function.
    Ceppa F; Mancini A; Tuohy K
    Int J Food Sci Nutr; 2019 Feb; 70(1):1-19. PubMed ID: 29671359
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Lignans and Gut Microbiota: An Interplay Revealing Potential Health Implications.
    Senizza A; Rocchetti G; Mosele JI; Patrone V; Callegari ML; Morelli L; Lucini L
    Molecules; 2020 Dec; 25(23):. PubMed ID: 33287261
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Linking dietary patterns with gut microbial composition and function.
    Sheflin AM; Melby CL; Carbonero F; Weir TL
    Gut Microbes; 2017 Mar; 8(2):113-129. PubMed ID: 27960648
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Impact of polyphenols and polyphenol-rich dietary sources on gut microbiota composition.
    Etxeberria U; Fernández-Quintela A; Milagro FI; Aguirre L; Martínez JA; Portillo MP
    J Agric Food Chem; 2013 Oct; 61(40):9517-33. PubMed ID: 24033291
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Gastrointestinal Simulation Model TWIN-SHIME Shows Differences between Human Urolithin-Metabotypes in Gut Microbiota Composition, Pomegranate Polyphenol Metabolism, and Transport along the Intestinal Tract.
    García-Villalba R; Vissenaekens H; Pitart J; Romo-Vaquero M; Espín JC; Grootaert C; Selma MV; Raes K; Smagghe G; Possemiers S; Van Camp J; Tomas-Barberan FA
    J Agric Food Chem; 2017 Jul; 65(27):5480-5493. PubMed ID: 28616977
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.