These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 27782200)

  • 21. General approach for high-power li-ion batteries: multiscale lithographic patterning of electrodes.
    Choi S; Kim TH; Lee JI; Kim J; Song HK; Park S
    ChemSusChem; 2014 Dec; 7(12):3483-90. PubMed ID: 25333718
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Atomic Insight into the Lithium Storage and Diffusion Mechanism of SiO2/Al2O3 Electrodes of Lithium Ion Batteries: ReaxFF Reactive Force Field Modeling.
    Ostadhossein A; Kim SY; Cubuk ED; Qi Y; van Duin AC
    J Phys Chem A; 2016 Apr; 120(13):2114-27. PubMed ID: 26978039
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries.
    Key B; Bhattacharyya R; Morcrette M; Seznéc V; Tarascon JM; Grey CP
    J Am Chem Soc; 2009 Jul; 131(26):9239-49. PubMed ID: 19298062
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Caramel popcorn shaped silicon particle with carbon coating as a high performance anode material for Li-ion batteries.
    He M; Sa Q; Liu G; Wang Y
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11152-8. PubMed ID: 24111737
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Group IVA Element (Si, Ge, Sn)-Based Alloying/Dealloying Anodes as Negative Electrodes for Full-Cell Lithium-Ion Batteries.
    Liu D; Liu ZJ; Li X; Xie W; Wang Q; Liu Q; Fu Y; He D
    Small; 2017 Dec; 13(45):. PubMed ID: 29024532
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thick solid electrolyte interphases grown on silicon nanocone anodes during slow cycling and their negative effects on the performance of Li-ion batteries.
    Luo F; Chu G; Xia X; Liu B; Zheng J; Li J; Li H; Gu C; Chen L
    Nanoscale; 2015 May; 7(17):7651-8. PubMed ID: 25833041
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Li(+)-conductive polymer-embedded nano-Si particles as anode material for advanced Li-ion batteries.
    Chen Y; Zeng S; Qian J; Wang Y; Cao Y; Yang H; Ai X
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3508-12. PubMed ID: 24467155
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Amorphous silicon-carbon nanospheres synthesized by chemical vapor deposition using cheap methyltrichlorosilane as improved anode materials for Li-ion batteries.
    Zhang Z; Zhang M; Wang Y; Tan Q; Lv X; Zhong Z; Li H; Su F
    Nanoscale; 2013 Jun; 5(12):5384-9. PubMed ID: 23652614
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular dynamics simulations of the first charge of a Li-ion-Si-anode nanobattery.
    Galvez-Aranda DE; Ponce V; Seminario JM
    J Mol Model; 2017 Apr; 23(4):120. PubMed ID: 28303437
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rational design of anode materials based on Group IVA elements (Si, Ge, and Sn) for lithium-ion batteries.
    Wu XL; Guo YG; Wan LJ
    Chem Asian J; 2013 Sep; 8(9):1948-58. PubMed ID: 23650077
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering of Silicon Core-Shell Structures for Li-ion Anodes.
    Rage B; Delbegue D; Louvain N; Lippens PE
    Chemistry; 2021 Nov; 27(66):16275-16290. PubMed ID: 34505732
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-Dimensional Conductive Gel Network as an Effective Binder for High-Performance Si Electrodes in Lithium-Ion Batteries.
    Yu X; Yang H; Meng H; Sun Y; Zheng J; Ma D; Xu X
    ACS Appl Mater Interfaces; 2015 Jul; 7(29):15961-7. PubMed ID: 26154655
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Economical synthesis and promotion of the electrochemical performance of silicon nanowires as anode material in Li-ion batteries.
    Xiao Y; Hao D; Chen H; Gong Z; Yang Y
    ACS Appl Mater Interfaces; 2013 Mar; 5(5):1681-7. PubMed ID: 23379363
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel mesoporous Si@C microspheres as anodes for lithium-ion batteries.
    Ma X; Liu M; Gan L; Tripathi PK; Zhao Y; Zhu D; Xu Z; Chen L
    Phys Chem Chem Phys; 2014 Mar; 16(9):4135-42. PubMed ID: 24448656
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of Phosphorus-Doping on Electrochemical Performance of Silicon Negative Electrodes in Lithium-Ion Batteries.
    Domi Y; Usui H; Shimizu M; Kakimoto Y; Sakaguchi H
    ACS Appl Mater Interfaces; 2016 Mar; 8(11):7125-32. PubMed ID: 26938119
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes.
    Wang W; Kumta PN
    ACS Nano; 2010 Apr; 4(4):2233-41. PubMed ID: 20364846
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Highly Adhesive and Soluble Copolyimide Binder: Improving the Long-Term Cycle Life of Silicon Anodes in Lithium-Ion Batteries.
    Choi J; Kim K; Jeong J; Cho KY; Ryou MH; Lee YM
    ACS Appl Mater Interfaces; 2015 Jul; 7(27):14851-8. PubMed ID: 26075943
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vertically ordered Ni₃Si₂/Si nanorod arrays as anode materials for high-performance Li-ion batteries.
    Fan X; Zhang H; Du N; Wu P; Xu X; Li Y; Yang D
    Nanoscale; 2012 Sep; 4(17):5343-7. PubMed ID: 22814832
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Facile synthesis and lithium storage properties of a porous NiSi2/Si/carbon composite anode material for lithium-ion batteries.
    Jia H; Stock C; Kloepsch R; He X; Badillo JP; Fromm O; Vortmann B; Winter M; Placke T
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1508-15. PubMed ID: 25574763
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.