BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 27782205)

  • 1. Discrimination of transgenic soybean seeds by terahertz spectroscopy.
    Liu W; Liu C; Chen F; Yang J; Zheng L
    Sci Rep; 2016 Oct; 6():35799. PubMed ID: 27782205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of terahertz spectroscopy imaging for discrimination of transgenic rice seeds with chemometrics.
    Liu W; Liu C; Hu X; Yang J; Zheng L
    Food Chem; 2016 Nov; 210():415-21. PubMed ID: 27211665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of terahertz spectrum and interval partial least squares method in the identification of genetically modified soybeans.
    Wei X; Zheng W; Zhu S; Zhou S; Wu W; Xie Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Sep; 238():118453. PubMed ID: 32408224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discrimination of geographical origin of extra virgin olive oils using terahertz spectroscopy combined with chemometrics.
    Liu W; Liu C; Yu J; Zhang Y; Li J; Chen Y; Zheng L
    Food Chem; 2018 Jun; 251():86-92. PubMed ID: 29426428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid determination of aflatoxin B
    Liu W; Zhao P; Wu C; Liu C; Yang J; Zheng L
    Food Chem; 2019 Sep; 293():213-219. PubMed ID: 31151603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discrimination of genetically modified sugar beets based on terahertz spectroscopy.
    Chen T; Li Z; Yin X; Hu F; Hu C
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jan; 153():586-90. PubMed ID: 26436847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nondestructive determination of transgenic Bacillus thuringiensis rice seeds (Oryza sativa L.) using multispectral imaging and chemometric methods.
    Liu C; Liu W; Lu X; Chen W; Yang J; Zheng L
    Food Chem; 2014 Jun; 153():87-93. PubMed ID: 24491704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Discrimination of Varieties of Cabbage with Near Infrared Spectra Based on Principal Component Analysis and Successive Projections Algorithm].
    Luo W; Du YZ; Zhang HL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Nov; 36(11):3536-41. PubMed ID: 30198665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feasibility of conventional and Roundup Ready® soybeans discrimination by different near infrared reflectance technologies.
    Esteve Agelet L; Gowen AA; Hurburgh CR; O'Donell CP
    Food Chem; 2012 Sep; 134(2):1165-72. PubMed ID: 23107744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of Rice Varieties and Transgenic Characteristics Based on Near-Infrared Diffuse Reflectance Spectroscopy and Chemometrics.
    Hao Y; Geng P; Wu W; Wen Q; Rao M
    Molecules; 2019 Dec; 24(24):. PubMed ID: 31847134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid determination of capsaicin concentration in soybean oil by terahertz spectroscopy.
    Xia Y; Liu W; Shi Y; Younas S; Liu C; Zheng L
    J Food Sci; 2022 Feb; 87(2):567-575. PubMed ID: 35049038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid identification of producing area of wheat using terahertz spectroscopy combined with chemometrics.
    Shen Y; Li B; Li G; Lang C; Wang H; Zhu J; Jia N; Liu L
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Mar; 269():120694. PubMed ID: 34922288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discrimination of internal crack for rice seeds using near infrared spectroscopy.
    Wang L; Wang W; Huang Z; Zhen S; Wang R
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Oct; 319():124578. PubMed ID: 38833887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discrimination of corn variety using Terahertz spectroscopy combined with chemometrics methods.
    Yang S; Li C; Mei Y; Liu W; Liu R; Chen W; Han D; Xu K
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 May; 252():119475. PubMed ID: 33530032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early detection of germinated wheat grains using terahertz image and chemometrics.
    Jiang Y; Ge H; Lian F; Zhang Y; Xia S
    Sci Rep; 2016 Feb; 6():21299. PubMed ID: 26892180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid characterization of transgenic and non-transgenic soybean oils by chemometric methods using NIR spectroscopy.
    Luna AS; da Silva AP; Pinho JS; Ferré J; Boqué R
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Jan; 100():115-9. PubMed ID: 22502875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discrimination of Transgenic Rice containing the Cry1Ab Protein using Terahertz Spectroscopy and Chemometrics.
    Xu W; Xie L; Ye Z; Gao W; Yao Y; Chen M; Qin J; Ying Y
    Sci Rep; 2015 Jul; 5():11115. PubMed ID: 26154950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quick Test for Transgenic Components in Rice Using Terahertz Spectra.
    Ju XG; Zhang Y; Lian FY; Fu MX
    Appl Spectrosc; 2019 Feb; 73(2):171-181. PubMed ID: 30345786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Terahertz spectroscopy combined with data dimensionality reduction algorithms for quantitative analysis of protein content in soybeans.
    Wei X; Li S; Zhu S; Zheng W; Xie Y; Zhou S; Hu M; Miao Y; Ma L; Wu W; Xie Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 May; 253():119571. PubMed ID: 33621931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of terahertz spectroscopy and chemometrics for discrimination of transgenic camellia oil.
    Liu J; Fan L; Liu Y; Mao L; Kan J
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jan; 206():165-169. PubMed ID: 30099314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.