These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 27782307)

  • 1. Estimation of relative free energies of binding using pre-computed ensembles based on the single-step free energy perturbation and the site-identification by Ligand competitive saturation approaches.
    Raman EP; Lakkaraju SK; Denny RA; MacKerell AD
    J Comput Chem; 2017 Jun; 38(15):1238-1251. PubMed ID: 27782307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inclusion of multiple fragment types in the site identification by ligand competitive saturation (SILCS) approach.
    Raman EP; Yu W; Lakkaraju SK; MacKerell AD
    J Chem Inf Model; 2013 Dec; 53(12):3384-98. PubMed ID: 24245913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site Identification by Ligand Competitive Saturation (SILCS) simulations for fragment-based drug design.
    Faller CE; Raman EP; MacKerell AD; Guvench O
    Methods Mol Biol; 2015; 1289():75-87. PubMed ID: 25709034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site-Specific Fragment Identification Guided by Single-Step Free Energy Perturbation Calculations.
    Raman EP; Vanommeslaeghe K; Mackerell AD
    J Chem Theory Comput; 2012 Oct; 8(10):3513-3525. PubMed ID: 23144598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein-Ligand Binding Free Energy Calculations with FEP.
    Wang L; Chambers J; Abel R
    Methods Mol Biol; 2019; 2022():201-232. PubMed ID: 31396905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid and accurate estimation of protein-ligand relative binding affinities using site-identification by ligand competitive saturation.
    Goel H; Hazel A; Ustach VD; Jo S; Yu W; MacKerell AD
    Chem Sci; 2021 Jul; 12(25):8844-8858. PubMed ID: 34257885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reproducing crystal binding modes of ligand functional groups using Site-Identification by Ligand Competitive Saturation (SILCS) simulations.
    Raman EP; Yu W; Guvench O; Mackerell AD
    J Chem Inf Model; 2011 Apr; 51(4):877-96. PubMed ID: 21456594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and characterization of fragment binding sites for allosteric ligand design using the site identification by ligand competitive saturation hotspots approach (SILCS-Hotspots).
    MacKerell AD; Jo S; Lakkaraju SK; Lind C; Yu W
    Biochim Biophys Acta Gen Subj; 2020 Apr; 1864(4):129519. PubMed ID: 31911242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational fragment-based binding site identification by ligand competitive saturation.
    Guvench O; MacKerell AD
    PLoS Comput Biol; 2009 Jul; 5(7):e1000435. PubMed ID: 19593374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated Covalent Drug Design Workflow Using Site Identification by Ligand Competitive Saturation.
    Yu W; Weber DJ; MacKerell AD
    J Chem Theory Comput; 2023 May; 19(10):3007-3021. PubMed ID: 37115781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization and Evaluation of Site-Identification by Ligand Competitive Saturation (SILCS) as a Tool for Target-Based Ligand Optimization.
    Ustach VD; Lakkaraju SK; Jo S; Yu W; Jiang W; MacKerell AD
    J Chem Inf Model; 2019 Jun; 59(6):3018-3035. PubMed ID: 31034213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing SILCS-MC via GPU Acceleration and Ligand Conformational Optimization with Genetic and Parallel Tempering Algorithms.
    Zhao M; Yu W; MacKerell AD
    J Phys Chem B; 2024 Aug; 128(30):7362-7375. PubMed ID: 39031121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relative Binding Free Energy Calculations Applied to Protein Homology Models.
    Cappel D; Hall ML; Lenselink EB; Beuming T; Qi J; Bradner J; Sherman W
    J Chem Inf Model; 2016 Dec; 56(12):2388-2400. PubMed ID: 28024402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calculate protein-ligand binding affinities with the extended linear interaction energy method: application on the Cathepsin S set in the D3R Grand Challenge 3.
    He X; Man VH; Ji B; Xie XQ; Wang J
    J Comput Aided Mol Des; 2019 Jan; 33(1):105-117. PubMed ID: 30218199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacophore modeling using site-identification by ligand competitive saturation (SILCS) with multiple probe molecules.
    Yu W; Lakkaraju SK; Raman EP; Fang L; MacKerell AD
    J Chem Inf Model; 2015 Feb; 55(2):407-20. PubMed ID: 25622696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free Energy Calculations for Protein-Ligand Binding Prediction.
    Jespers W; Åqvist J; Gutiérrez-de-Terán H
    Methods Mol Biol; 2021; 2266():203-226. PubMed ID: 33759129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ChemFlow─From 2D Chemical Libraries to Protein-Ligand Binding Free Energies.
    Barreto Gomes DE; Galentino K; Sisquellas M; Monari L; Bouysset C; Cecchini M
    J Chem Inf Model; 2023 Jan; 63(2):407-411. PubMed ID: 36603846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting Activity Cliffs with Free-Energy Perturbation.
    Pérez-Benito L; Casajuana-Martin N; Jiménez-Rosés M; van Vlijmen H; Tresadern G
    J Chem Theory Comput; 2019 Mar; 15(3):1884-1895. PubMed ID: 30776226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate Modeling of Scaffold Hopping Transformations in Drug Discovery.
    Wang L; Deng Y; Wu Y; Kim B; LeBard DN; Wandschneider D; Beachy M; Friesner RA; Abel R
    J Chem Theory Comput; 2017 Jan; 13(1):42-54. PubMed ID: 27933808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advancing Drug Discovery through Enhanced Free Energy Calculations.
    Abel R; Wang L; Harder ED; Berne BJ; Friesner RA
    Acc Chem Res; 2017 Jul; 50(7):1625-1632. PubMed ID: 28677954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.