These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Pressure-induced liquid-liquid transition in a family of ionic materials. Wojnarowska Z; Cheng S; Yao B; Swadzba-Kwasny M; McLaughlin S; McGrogan A; Delavoux Y; Paluch M Nat Commun; 2022 Mar; 13(1):1342. PubMed ID: 35292645 [TBL] [Abstract][Full Text] [Related]
23. Local order and long range correlations in imidazolium halide ionic liquids: a combined molecular dynamics and XAS study. Migliorati V; Serva A; Aquilanti G; Pascarelli S; D'Angelo P Phys Chem Chem Phys; 2015 Jul; 17(25):16443-53. PubMed ID: 26051186 [TBL] [Abstract][Full Text] [Related]
24. SAXS anti-peaks reveal the length-scales of dual positive-negative and polar-apolar ordering in room-temperature ionic liquids. Kashyap HK; Hettige JJ; Annapureddy HV; Margulis CJ Chem Commun (Camb); 2012 May; 48(42):5103-5. PubMed ID: 22523744 [TBL] [Abstract][Full Text] [Related]
25. Temperature Dependence of Static Structure Factor Peak Intensities for a Pyrrolidinium-Based Ionic Liquid. Mackoy T; Mauro NA; Wheeler RA J Phys Chem B; 2019 Feb; 123(7):1672-1678. PubMed ID: 30673263 [TBL] [Abstract][Full Text] [Related]
26. Biodiversity of soil bacteria exposed to sub-lethal concentrations of phosphonium-based ionic liquids: Effects of toxicity and biodegradation. Sydow M; Owsianiak M; Framski G; Woźniak-Karczewska M; Piotrowska-Cyplik A; Ławniczak Ł; Szulc A; Zgoła-Grześkowiak A; Heipieper HJ; Chrzanowski Ł Ecotoxicol Environ Saf; 2018 Jan; 147():157-164. PubMed ID: 28843187 [TBL] [Abstract][Full Text] [Related]
28. Immobilization of phosphonium-based ionic liquid stationary phases extends their operative range to routine applications in the flavor, fragrance and natural product fields. Cagliero C; Bizzo H; Rubiolo P; Marengo A; Galli S; Anderson JL; Sgorbini B; Bicchi C J Chromatogr A; 2022 Feb; 1664():462796. PubMed ID: 34999302 [TBL] [Abstract][Full Text] [Related]
29. Inflection Point in Pressure Dependence of Ionic Conductivity as a Fingerprint of Local Structure Formation. Koymeth S; Yao B; Paluch M; Dulski M; Swadzba-Kwasny M; Wojnarowska Z J Phys Chem B; 2024 May; 128(20):5109-5117. PubMed ID: 38718191 [TBL] [Abstract][Full Text] [Related]
30. Reaction kinetics of CO2 absorption in to phosphonium based anion-functionalized ionic liquids. Gurkan BE; Gohndrone TR; McCready MJ; Brennecke JF Phys Chem Chem Phys; 2013 May; 15(20):7796-811. PubMed ID: 23598368 [TBL] [Abstract][Full Text] [Related]
31. Rheology of phosphonium ionic liquids: a molecular dynamics and experimental study. Sarman S; Wang YL; Rohlmann P; Glavatskih S; Laaksonen A Phys Chem Chem Phys; 2018 Apr; 20(15):10193-10203. PubMed ID: 29594283 [TBL] [Abstract][Full Text] [Related]
32. Relationship between low-Q peak and long-range ordering of ionic liquids revealed by high-energy X-ray total scattering. Fujii K; Kohara S; Umebayashi Y Phys Chem Chem Phys; 2015 Jul; 17(27):17838-43. PubMed ID: 26089237 [TBL] [Abstract][Full Text] [Related]
33. Machine Learning-Boosted Design of Ionic Liquids for CO Kuroki N; Suzuki Y; Kodama D; Chowdhury FA; Yamada H; Mori H J Phys Chem B; 2023 Mar; 127(9):2022-2027. PubMed ID: 36827525 [TBL] [Abstract][Full Text] [Related]