These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 27782453)

  • 1. Chebyshev polynomial filtered subspace iteration in the discontinuous Galerkin method for large-scale electronic structure calculations.
    Banerjee AS; Lin L; Hu W; Yang C; Pask JE
    J Chem Phys; 2016 Oct; 145(15):154101. PubMed ID: 27782453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-Level Chebyshev Filter Based Complementary Subspace Method: Pushing the Envelope of Large-Scale Electronic Structure Calculations.
    Banerjee AS; Lin L; Suryanarayana P; Yang C; Pask JE
    J Chem Theory Comput; 2018 Jun; 14(6):2930-2946. PubMed ID: 29660292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DGDFT: A massively parallel method for large scale density functional theory calculations.
    Hu W; Lin L; Yang C
    J Chem Phys; 2015 Sep; 143(12):124110. PubMed ID: 26428999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ab initio electronic structure calculations using a real-space Chebyshev-filtered subspace iteration method.
    Xu Q; Wang S; Xue L; Shao X; Gao P; Lv J; Wang Y; Ma Y
    J Phys Condens Matter; 2019 Nov; 31(45):455901. PubMed ID: 31207590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Edge reconstruction in armchair phosphorene nanoribbons revealed by discontinuous Galerkin density functional theory.
    Hu W; Lin L; Yang C
    Phys Chem Chem Phys; 2015 Dec; 17(47):31397-404. PubMed ID: 25698178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallel self-consistent-field calculations via Chebyshev-filtered subspace acceleration.
    Zhou Y; Saad Y; Tiago ML; Chelikowsky JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 2):066704. PubMed ID: 17280174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High performance computing of DGDFT for tens of thousands of atoms using millions of cores on Sunway TaihuLight.
    Hu W; Qin X; Jiang Q; Chen J; An H; Jia W; Li F; Liu X; Chen D; Liu F; Zhao Y; Yang J
    Sci Bull (Beijing); 2021 Jan; 66(2):111-119. PubMed ID: 36654217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Algorithms for the electronic and vibrational properties of nanocrystals.
    Chelikowsky JR; Zayak AT; Chan TL; Tiago ML; Zhou Y; Saad Y
    J Phys Condens Matter; 2009 Feb; 21(6):064207. PubMed ID: 21715910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Space-Filling Curves for Real-Space Electronic Structure Calculations.
    Liou KH; Biller A; Kronik L; Chelikowsky JR
    J Chem Theory Comput; 2021 Jul; 17(7):4039-4048. PubMed ID: 34081448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kohn-Sham Density Functional Theory Electronic Structure Calculations with Linearly Scaling Computational Time and Memory Usage.
    Rudberg E; Rubensson EH; Sałek P
    J Chem Theory Comput; 2011 Feb; 7(2):340-50. PubMed ID: 26596156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Projected Commutator DIIS Method for Accelerating Hybrid Functional Electronic Structure Calculations.
    Hu W; Lin L; Yang C
    J Chem Theory Comput; 2017 Nov; 13(11):5458-5467. PubMed ID: 28937762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subspace recursive Fermi-operator expansion strategies for large-scale DFT eigenvalue problems on HPC architectures.
    Khadatkar S; Motamarri P
    J Chem Phys; 2023 Jul; 159(3):. PubMed ID: 37470423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linear-scaling implementation of molecular response theory in self-consistent field electronic-structure theory.
    Coriani S; Høst S; Jansík B; Thøgersen L; Olsen J; Jørgensen P; Reine S; Pawłowski F; Helgaker T; Sałek P
    J Chem Phys; 2007 Apr; 126(15):154108. PubMed ID: 17461615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SIESTA-PEXSI: massively parallel method for efficient and accurate ab initio materials simulation without matrix diagonalization.
    Lin L; García A; Huhs G; Yang C
    J Phys Condens Matter; 2014 Jul; 26(30):305503. PubMed ID: 25007803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supersonic turbulent flow simulation using a scalable parallel modal discontinuous Galerkin numerical method.
    Houba T; Dasgupta A; Gopalakrishnan S; Gosse R; Roy S
    Sci Rep; 2019 Oct; 9(1):14442. PubMed ID: 31594959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-space solution to the electronic structure problem for nearly a million electrons.
    Dogan M; Liou KH; Chelikowsky JR
    J Chem Phys; 2023 Jun; 158(24):. PubMed ID: 37366310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discrete discontinuous basis projection method for large-scale electronic structure calculations.
    Xu Q; Suryanarayana P; Pask JE
    J Chem Phys; 2018 Sep; 149(9):094104. PubMed ID: 30195317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical Bonding in Large Systems Using Projected Population Analysis from Real-Space Density Functional Theory Calculations.
    Ramakrishnan K; Nori SKK; Lee SC; Das GP; Bhattacharjee S; Motamarri P
    J Chem Theory Comput; 2023 Jul; 19(13):4216-4231. PubMed ID: 37339477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parallel Implementation of Large-Scale Linear Scaling Density Functional Theory Calculations With Numerical Atomic Orbitals in HONPAS.
    Luo Z; Qin X; Wan L; Hu W; Yang J
    Front Chem; 2020; 8():589910. PubMed ID: 33324611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pseudodiagonalization Method for Accelerating Nonlinear Subspace Diagonalization in Density Functional Theory.
    Shah S; Suryanarayana P; Chow E
    J Chem Theory Comput; 2022 Jun; 18(6):3474-3482. PubMed ID: 35608960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.