These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 27782480)
1. Domain overlap matrices from plane-wave-based methods of electronic structure calculation. Golub P; Baranov AI J Chem Phys; 2016 Oct; 145(15):154107. PubMed ID: 27782480 [TBL] [Abstract][Full Text] [Related]
2. Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids. Maintz S; Deringer VL; Tchougréeff AL; Dronskowski R J Comput Chem; 2013 Nov; 34(29):2557-67. PubMed ID: 24022911 [TBL] [Abstract][Full Text] [Related]
3. Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. Enkovaara J; Rostgaard C; Mortensen JJ; Chen J; Dułak M; Ferrighi L; Gavnholt J; Glinsvad C; Haikola V; Hansen HA; Kristoffersen HH; Kuisma M; Larsen AH; Lehtovaara L; Ljungberg M; Lopez-Acevedo O; Moses PG; Ojanen J; Olsen T; Petzold V; Romero NA; Stausholm-Møller J; Strange M; Tritsaris GA; Vanin M; Walter M; Hammer B; Häkkinen H; Madsen GK; Nieminen RM; Nørskov JK; Puska M; Rantala TT; Schiøtz J; Thygesen KS; Jacobsen KW J Phys Condens Matter; 2010 Jun; 22(25):253202. PubMed ID: 21393795 [TBL] [Abstract][Full Text] [Related]
4. Quantitative Electron Delocalization in Solids from Maximally Localized Wannier Functions. Otero-de-la-Roza A; Martín Pendás Á; Johnson ER J Chem Theory Comput; 2018 Sep; 14(9):4699-4710. PubMed ID: 30067365 [TBL] [Abstract][Full Text] [Related]
5. Electron localization and delocalization indices for solids. Baranov AI; Kohout M J Comput Chem; 2011 Jul; 32(10):2064-76. PubMed ID: 21538404 [TBL] [Abstract][Full Text] [Related]
6. Computation of NMR observables: Consequences of projector-augmented wave sphere overlap. Zwanziger JW Solid State Nucl Magn Reson; 2016 Nov; 80():14-18. PubMed ID: 27833006 [TBL] [Abstract][Full Text] [Related]
7. A projection-free method for representing plane-wave DFT results in an atom-centered basis. Dunnington BD; Schmidt JR J Chem Phys; 2015 Sep; 143(10):104109. PubMed ID: 26374020 [TBL] [Abstract][Full Text] [Related]
8. Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets. Deringer VL; Tchougréeff AL; Dronskowski R J Phys Chem A; 2011 Jun; 115(21):5461-6. PubMed ID: 21548594 [TBL] [Abstract][Full Text] [Related]
9. Structural and electronic properties of Li(2)b(4)O(7). Islam MM; Maslyuk VV; Bredow T; Minot C J Phys Chem B; 2005 Jul; 109(28):13597-604. PubMed ID: 16852703 [TBL] [Abstract][Full Text] [Related]
10. Implementation of density functional embedding theory within the projector-augmented-wave method and applications to semiconductor defect states. Yu K; Libisch F; Carter EA J Chem Phys; 2015 Sep; 143(10):102806. PubMed ID: 26373999 [TBL] [Abstract][Full Text] [Related]
11. Projector Augmented Wave Method with Gauss-Type Atomic Orbital Basis: Implementation of the Generalized Gradient Approximation and Mesh Grid Quadrature. Xiong XG; Sugiura A; Yanai T J Chem Theory Comput; 2020 Aug; 16(8):4883-4898. PubMed ID: 32633511 [TBL] [Abstract][Full Text] [Related]
12. Modeling bulk and surface Pt using the "Gaussian and plane wave" density functional theory formalism: validation and comparison to k-point plane wave calculations. Santarossa G; Vargas A; Iannuzzi M; Pignedoli CA; Passerone D; Baiker A J Chem Phys; 2008 Dec; 129(23):234703. PubMed ID: 19102548 [TBL] [Abstract][Full Text] [Related]
13. A self-consistent DFT + DMFT scheme in the projector augmented wave method: applications to cerium, Ce2O3 and Pu2O3 with the Hubbard I solver and comparison to DFT + U. Amadon B J Phys Condens Matter; 2012 Feb; 24(7):075604. PubMed ID: 22301576 [TBL] [Abstract][Full Text] [Related]
14. LOBSTER: Local orbital projections, atomic charges, and chemical-bonding analysis from projector-augmented-wave-based density-functional theory. Nelson R; Ertural C; George J; Deringer VL; Hautier G; Dronskowski R J Comput Chem; 2020 Aug; 41(21):1931-1940. PubMed ID: 32531113 [TBL] [Abstract][Full Text] [Related]
15. Generalization of Natural Bond Orbital Analysis to Periodic Systems: Applications to Solids and Surfaces via Plane-Wave Density Functional Theory. Dunnington BD; Schmidt JR J Chem Theory Comput; 2012 Jun; 8(6):1902-11. PubMed ID: 26593824 [TBL] [Abstract][Full Text] [Related]
16. Hydrogen bonding in the LaNi3BH3 hydride. Orgaz E; Aburto A J Chem Phys; 2006 Oct; 125(14):144708. PubMed ID: 17042632 [TBL] [Abstract][Full Text] [Related]
17. An approach to develop chemical intuition for atomistic electron transport calculations using basis set rotations. Borges A; Solomon GC J Chem Phys; 2016 May; 144(19):194111. PubMed ID: 27208940 [TBL] [Abstract][Full Text] [Related]
18. Exploring the chemical nature of super-heavy main-group elements by means of efficient plane-wave density-functional theory. Trombach L; Ehlert S; Grimme S; Schwerdtfeger P; Mewes JM Phys Chem Chem Phys; 2019 Aug; 21(33):18048-18058. PubMed ID: 31219481 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of atomic integrals for hybrid Gaussian type and plane-wave basis functions via the McMurchie-Davidson recursion formula. Tachikawa M; Shiga M Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056706. PubMed ID: 11736140 [TBL] [Abstract][Full Text] [Related]
20. Projector Augmented Wave Method Incorporated into Gauss-Type Atomic Orbital Based Density Functional Theory. Xiong XG; Yanai T J Chem Theory Comput; 2017 Jul; 13(7):3236-3249. PubMed ID: 28531346 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]