These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 27782504)

  • 1. cDPD: A new dissipative particle dynamics method for modeling electrokinetic phenomena at the mesoscale.
    Deng M; Li Z; Borodin O; Karniadakis GE
    J Chem Phys; 2016 Oct; 145(14):144109. PubMed ID: 27782504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling electrokinetics in ionic liquids.
    Wang C; Bao J; Pan W; Sun X
    Electrophoresis; 2017 Jul; 38(13-14):1693-1705. PubMed ID: 28314048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical homogenization of electrokinetic equations in porous media using lattice-Boltzmann simulations.
    Obliger A; Duvail M; Jardat M; Coelho D; Békri S; Rotenberg B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):013019. PubMed ID: 23944561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An efficient dissipative particle dynamics-based algorithm for simulating electrolyte solutions.
    Medina S; Zhou J; Wang ZG; Schmid F
    J Chem Phys; 2015 Jan; 142(2):024103. PubMed ID: 25591334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pore network model of electrokinetic transport through charged porous media.
    Obliger A; Jardat M; Coelho D; Bekri S; Rotenberg B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):043013. PubMed ID: 24827338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport dissipative particle dynamics model for mesoscopic advection-diffusion-reaction problems.
    Li Z; Yazdani A; Tartakovsky A; Karniadakis GE
    J Chem Phys; 2015 Jul; 143(1):014101. PubMed ID: 26156459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Moving charged particles in lattice Boltzmann-based electrokinetics.
    Kuron M; Rempfer G; Schornbaum F; Bauer M; Godenschwager C; Holm C; de Graaf J
    J Chem Phys; 2016 Dec; 145(21):214102. PubMed ID: 28799336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mesoscopic simulations of the counterion-induced electro-osmotic flow: a comparative study.
    Smiatek J; Sega M; Holm C; Schiller UD; Schmid F
    J Chem Phys; 2009 Jun; 130(24):244702. PubMed ID: 19566169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analyte concentration at the tip of a nanopipette.
    Calander N
    Anal Chem; 2009 Oct; 81(20):8347-53. PubMed ID: 19751050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parametrical studies of electroosmotic transport characteristics in submicrometer channels.
    Postler T; Slouka Z; Svoboda M; Pribyl M; Snita D
    J Colloid Interface Sci; 2008 Apr; 320(1):321-32. PubMed ID: 18201714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrodynamic interactions for single dissipative-particle-dynamics particles and their clusters and filaments.
    Pan W; Fedosov DA; Karniadakis GE; Caswell B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046706. PubMed ID: 18999560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrodiffusiophoretic motion of a charged spherical particle in a nanopore.
    Yalcin SE; Lee SY; Joo SW; Baysal O; Qian S
    J Phys Chem B; 2010 Mar; 114(11):4082-93. PubMed ID: 20196581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrostatic interactions in dissipative particle dynamics using the Ewald sums.
    González-Melchor M; Mayoral E; Velázquez ME; Alejandre J
    J Chem Phys; 2006 Dec; 125(22):224107. PubMed ID: 17176134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrostatics in dissipative particle dynamics using Ewald sums with point charges.
    Terrón-Mejía KA; López-Rendón R; Goicochea AG
    J Phys Condens Matter; 2016 Oct; 28(42):425101. PubMed ID: 27541198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrostatic Interactions in Dissipative Particle Dynamics: Toward a Mesoscale Modeling of the Polyelectrolyte Brushes.
    Ibergay C; Malfreyt P; Tildesley DJ
    J Chem Theory Comput; 2009 Dec; 5(12):3245-59. PubMed ID: 26602508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid smoothed dissipative particle dynamics and immersed boundary method for simulation of red blood cells in flows.
    Ye T; Phan-Thien N; Lim CT; Peng L; Shi H
    Phys Rev E; 2017 Jun; 95(6-1):063314. PubMed ID: 28709282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Theory for Electrokinetic Transport in pH-Regulated Nanochannels.
    Kong X; Jiang J; Lu D; Liu Z; Wu J
    J Phys Chem Lett; 2014 Sep; 5(17):3015-20. PubMed ID: 26278253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of mesoscopic particle-based methods in microfluidic geometries.
    Zhao T; Wang X; Jiang L; Larson RG
    J Chem Phys; 2013 Aug; 139(8):084109. PubMed ID: 24006976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mesoscopic bridging scale method for fluids and coupling dissipative particle dynamics with continuum finite element method.
    Kojic M; Filipovic N; Tsuda A
    Comput Methods Appl Mech Eng; 2013 Jan; 197(6-8):821-833. PubMed ID: 23814322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electro-osmotic flow over a charged superhydrophobic surface.
    Zhao H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066314. PubMed ID: 20866529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.