BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 27782723)

  • 1. Automatic multiorgan segmentation in CT images of the male pelvis using region-specific hierarchical appearance cluster models.
    Li D; Zang P; Chai X; Cui Y; Li R; Xing L
    Med Phys; 2016 Oct; 43(10):5426. PubMed ID: 27782723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic segmentation of thoracic and pelvic CT images for radiotherapy planning using implicit anatomic knowledge and organ-specific segmentation strategies.
    Haas B; Coradi T; Scholz M; Kunz P; Huber M; Oppitz U; André L; Lengkeek V; Huyskens D; van Esch A; Reddick R
    Phys Med Biol; 2008 Mar; 53(6):1751-71. PubMed ID: 18367801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fully automated organ segmentation in male pelvic CT images.
    Balagopal A; Kazemifar S; Nguyen D; Lin MH; Hannan R; Owrangi A; Jiang S
    Phys Med Biol; 2018 Dec; 63(24):245015. PubMed ID: 30523973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic bladder segmentation on CBCT for multiple plan ART of bladder cancer using a patient-specific bladder model.
    Chai X; van Herk M; Betgen A; Hulshof M; Bel A
    Phys Med Biol; 2012 Jun; 57(12):3945-62. PubMed ID: 22643320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ARPM-net: A novel CNN-based adversarial method with Markov random field enhancement for prostate and organs at risk segmentation in pelvic CT images.
    Zhang Z; Zhao T; Gay H; Zhang W; Sun B
    Med Phys; 2021 Jan; 48(1):227-237. PubMed ID: 33151620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Male pelvic multi-organ segmentation using token-based transformer Vnet.
    Pan S; Lei Y; Wang T; Wynne J; Chang CW; Roper J; Jani AB; Patel P; Bradley JD; Liu T; Yang X
    Phys Med Biol; 2022 Oct; 67(20):. PubMed ID: 36170872
    [No Abstract]   [Full Text] [Related]  

  • 7. Development of in-house fully residual deep convolutional neural network-based segmentation software for the male pelvic CT.
    Hirashima H; Nakamura M; Baillehache P; Fujimoto Y; Nakagawa S; Saruya Y; Kabasawa T; Mizowaki T
    Radiat Oncol; 2021 Jul; 16(1):135. PubMed ID: 34294090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A semiautomatic segmentation method for prostate in CT images using local texture classification and statistical shape modeling.
    Shahedi M; Halicek M; Guo R; Zhang G; Schuster DM; Fei B
    Med Phys; 2018 Jun; 45(6):2527-2541. PubMed ID: 29611216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning image context for segmentation of the prostate in CT-guided radiotherapy.
    Li W; Liao S; Feng Q; Chen W; Shen D
    Phys Med Biol; 2012 Mar; 57(5):1283-308. PubMed ID: 22343071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-task edge-recalibrated network for male pelvic multi-organ segmentation on CT images.
    Tong N; Gou S; Chen S; Yao Y; Yang S; Cao M; Kishan A; Sheng K
    Phys Med Biol; 2021 Jan; 66(3):035001. PubMed ID: 33197901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pretreatment information-aided automatic segmentation for online magnetic resonance imaging-guided prostate radiotherapy.
    Yang B; Liu Y; Zhu J; Lu N; Dai J; Men K
    Med Phys; 2024 Feb; 51(2):922-932. PubMed ID: 37449545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic MRI-aided multi-organ segmentation on male pelvic CT using cycle consistent deep attention network.
    Dong X; Lei Y; Tian S; Wang T; Patel P; Curran WJ; Jani AB; Liu T; Yang X
    Radiother Oncol; 2019 Dec; 141():192-199. PubMed ID: 31630868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semiautomatic bladder segmentation on CBCT using a population-based model for multiple-plan ART of bladder cancer.
    Chai X; van Herk M; Betgen A; Hulshof M; Bel A
    Phys Med Biol; 2012 Dec; 57(24):N525-41. PubMed ID: 23190683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic segmentation of male pelvic anatomy on computed tomography images: a comparison with multiple observers in the context of a multicentre clinical trial.
    Geraghty JP; Grogan G; Ebert MA
    Radiat Oncol; 2013 Apr; 8():106. PubMed ID: 23631832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Male pelvic multi-organ segmentation aided by CBCT-based synthetic MRI.
    Lei Y; Wang T; Tian S; Dong X; Jani AB; Schuster D; Curran WJ; Patel P; Liu T; Yang X
    Phys Med Biol; 2020 Feb; 65(3):035013. PubMed ID: 31851956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks.
    Tong N; Gou S; Yang S; Ruan D; Sheng K
    Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Segmentation of pelvic structures for planning CT using a geometrical shape model tuned by a multi-scale edge detector.
    Martínez F; Romero E; Dréan G; Simon A; Haigron P; de Crevoisier R; Acosta O
    Phys Med Biol; 2014 Mar; 59(6):1471-84. PubMed ID: 24594798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate Segmentation of CT Male Pelvic Organs via Regression-Based Deformable Models and Multi-Task Random Forests.
    Gao Y; Shao Y; Lian J; Wang AZ; Chen RC; Shen D
    IEEE Trans Med Imaging; 2016 Jun; 35(6):1532-43. PubMed ID: 26800531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patient-specific transfer learning for auto-segmentation in adaptive 0.35 T MRgRT of prostate cancer: a bi-centric evaluation.
    Kawula M; Hadi I; Nierer L; Vagni M; Cusumano D; Boldrini L; Placidi L; Corradini S; Belka C; Landry G; Kurz C
    Med Phys; 2023 Mar; 50(3):1573-1585. PubMed ID: 36259384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The segmentation of bones in pelvic CT images based on extraction of key frames.
    Yu H; Wang H; Shi Y; Xu K; Yu X; Cao Y
    BMC Med Imaging; 2018 May; 18(1):18. PubMed ID: 29788923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.