These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 27782752)

  • 1. Therapy implications of the role of interleukin-2 in cancer.
    Lissoni P
    Expert Rev Clin Immunol; 2017 May; 13(5):491-498. PubMed ID: 27782752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local checkpoint inhibition of CTLA-4 as a monotherapy or in combination with anti-PD1 prevents the growth of murine bladder cancer.
    van Hooren L; Sandin LC; Moskalev I; Ellmark P; Dimberg A; Black P; Tötterman TH; Mangsbo SM
    Eur J Immunol; 2017 Feb; 47(2):385-393. PubMed ID: 27873300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting Checkpoint Receptors and Molecules for Therapeutic Modulation of Natural Killer Cells.
    Kim N; Kim HS
    Front Immunol; 2018; 9():2041. PubMed ID: 30250471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. IL2/Anti-IL2 Complex Combined with CTLA-4, But Not PD-1, Blockade Rescues Antitumor NK Cell Function by Regulatory T-cell Modulation.
    Caudana P; Núñez NG; De La Rochere P; Pinto A; Denizeau J; Alonso R; Niborski LL; Lantz O; Sedlik C; Piaggio E
    Cancer Immunol Res; 2019 Mar; 7(3):443-457. PubMed ID: 30651291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TIGIT and CD96: new checkpoint receptor targets for cancer immunotherapy.
    Dougall WC; Kurtulus S; Smyth MJ; Anderson AC
    Immunol Rev; 2017 Mar; 276(1):112-120. PubMed ID: 28258695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Physiopathological mechanisms of immune-related adverse events induced by anti-CTLA-4, anti-PD-1 and anti-PD-L1 antibodies in cancer treatment].
    Passat T; Touchefeu Y; Gervois N; Jarry A; Bossard C; Bennouna J
    Bull Cancer; 2018 Nov; 105(11):1033-1041. PubMed ID: 30244981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Rise of NK Cell Checkpoints as Promising Therapeutic Targets in Cancer Immunotherapy.
    Sun H; Sun C
    Front Immunol; 2019; 10():2354. PubMed ID: 31681269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CTLA-4 and PD-1 Control of T-Cell Motility and Migration: Implications for Tumor Immunotherapy.
    Brunner-Weinzierl MC; Rudd CE
    Front Immunol; 2018; 9():2737. PubMed ID: 30542345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combination therapy using IL-2 and anti-CD25 results in augmented natural killer cell-mediated antitumor responses.
    Hallett WHD; Ames E; Álvarez M; Barao I; Taylor PA; Blazar BR; Murphy WJ
    Biol Blood Marrow Transplant; 2008 Oct; 14(10):1088-1099. PubMed ID: 18804038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Regulatory T cells in cancer immunotherapy].
    Nishikawa H
    Rinsho Ketsueki; 2014 Oct; 55(10):2183-9. PubMed ID: 25297785
    [No Abstract]   [Full Text] [Related]  

  • 11. CD11a/ICAM-1 blockade combined with IL-2 targeting therapy causes a paradoxical acceleration of type 1 diabetes.
    Brenu EW; Bartley TJ; Wright CM; Hamilton-Williams EE
    Immunol Cell Biol; 2017 Oct; 95(9):803-813. PubMed ID: 28611472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 'Final common pathway' of human cancer immunotherapy: targeting random somatic mutations.
    Tran E; Robbins PF; Rosenberg SA
    Nat Immunol; 2017 Feb; 18(3):255-262. PubMed ID: 28198830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immune checkpoints and their inhibition in cancer and infectious diseases.
    Dyck L; Mills KHG
    Eur J Immunol; 2017 May; 47(5):765-779. PubMed ID: 28393361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immune checkpoint inhibitors in cancer therapy: a focus on T-regulatory cells.
    Sasidharan Nair V; Elkord E
    Immunol Cell Biol; 2018 Jan; 96(1):21-33. PubMed ID: 29359507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent developments and future challenges in immune checkpoint inhibitory cancer treatment.
    Koster BD; de Gruijl TD; van den Eertwegh AJ
    Curr Opin Oncol; 2015 Nov; 27(6):482-8. PubMed ID: 26352539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting T Cell Co-receptors for Cancer Therapy.
    Callahan MK; Postow MA; Wolchok JD
    Immunity; 2016 May; 44(5):1069-78. PubMed ID: 27192570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Checkpoint blocking antibodies in cancer immunotherapy.
    Kyi C; Postow MA
    FEBS Lett; 2014 Jan; 588(2):368-76. PubMed ID: 24161671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anti-cancer Therapies Employing IL-2 Cytokine Tumor Targeting: Contribution of Innate, Adaptive and Immunosuppressive Cells in the Anti-tumor Efficacy.
    Mortara L; Balza E; Bruno A; Poggi A; Orecchia P; Carnemolla B
    Front Immunol; 2018; 9():2905. PubMed ID: 30619269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New checkpoints in cancer immunotherapy.
    Ni L; Dong C
    Immunol Rev; 2017 Mar; 276(1):52-65. PubMed ID: 28258699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of CTLA-4 and PD-1 in anti-tumor immune response and their potential efficacy against osteosarcoma.
    Wang SD; Li HY; Li BH; Xie T; Zhu T; Sun LL; Ren HY; Ye ZM
    Int Immunopharmacol; 2016 Sep; 38():81-9. PubMed ID: 27258185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.