BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 27783069)

  • 1. An atomistic view on carbocyanine photophysics in the realm of RNA.
    Steffen FD; Sigel RK; Börner R
    Phys Chem Chem Phys; 2016 Oct; 18(42):29045-29055. PubMed ID: 27783069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Indocyanine dyes approach free rotation at the 3' terminus of A-RNA: a comparison with the 5' terminus and consequences for fluorescence resonance energy transfer.
    Milas P; Gamari BD; Parrot L; Krueger BP; Rahmanseresht S; Moore J; Goldner LS
    J Phys Chem B; 2013 Jul; 117(29):8649-58. PubMed ID: 23799279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular and Spectroscopic Characterization of Green and Red Cyanine Fluorophores from the Alexa Fluor and AF Series*.
    Gebhardt C; Lehmann M; Reif MM; Zacharias M; Gemmecker G; Cordes T
    Chemphyschem; 2021 Aug; 22(15):1566-1583. PubMed ID: 34185946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immobilization of Cyanines in DNA Produces Systematic Increases in Fluorescence Intensity.
    Pace NA; Hennelly SP; Goodwin PM
    J Phys Chem Lett; 2021 Sep; 12(37):8963-8971. PubMed ID: 34506152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of cyanine dyes with nucleic acids. XII.beta-substituted carbocyanines as possible fluorescent probes for nucleic acids detection.
    Yarmoluk SM; Kovalska VB; Lukashov SS; Slominskii YL
    Bioorg Med Chem Lett; 1999 Jun; 9(12):1677-8. PubMed ID: 10397499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-molecule quantum-dot fluorescence resonance energy transfer.
    Hohng S; Ha T
    Chemphyschem; 2005 May; 6(5):956-60. PubMed ID: 15884082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Demystifying PIFE: The Photophysics Behind the Protein-Induced Fluorescence Enhancement Phenomenon in Cy3.
    Stennett EM; Ciuba MA; Lin S; Levitus M
    J Phys Chem Lett; 2015 May; 6(10):1819-23. PubMed ID: 26263254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directional Photonic Wire Mediated by Homo-Förster Resonance Energy Transfer on a DNA Origami Platform.
    Nicoli F; Barth A; Bae W; Neukirchinger F; Crevenna AH; Lamb DC; Liedl T
    ACS Nano; 2017 Nov; 11(11):11264-11272. PubMed ID: 29063765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence properties and photophysics of the sulfoindocyanine Cy3 linked covalently to DNA.
    Sanborn ME; Connolly BK; Gurunathan K; Levitus M
    J Phys Chem B; 2007 Sep; 111(37):11064-74. PubMed ID: 17718469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targetable Conformationally Restricted Cyanines Enable Photon-Count-Limited Applications*.
    Eiring P; McLaughlin R; Matikonda SS; Han Z; Grabenhorst L; Helmerich DA; Meub M; Beliu G; Luciano M; Bandi V; Zijlstra N; Shi ZD; Tarasov SG; Swenson R; Tinnefeld P; Glembockyte V; Cordes T; Sauer M; Schnermann MJ
    Angew Chem Int Ed Engl; 2021 Dec; 60(51):26685-26693. PubMed ID: 34606673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate distance determination of nucleic acids via Förster resonance energy transfer: implications of dye linker length and rigidity.
    Sindbert S; Kalinin S; Nguyen H; Kienzler A; Clima L; Bannwarth W; Appel B; Müller S; Seidel CA
    J Am Chem Soc; 2011 Mar; 133(8):2463-80. PubMed ID: 21291253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photophysical behavior of a dimeric cyanine dye (BOBO-1) within cationic liposomes.
    Madeira C; Fedorov A; Aires-Barros MR; Prieto M; Loura LM
    Photochem Photobiol; 2005; 81(6):1450-9. PubMed ID: 16029081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NIR fluorescent biotinylated cyanine dye: optical properties and combination with quantum dots as a potential sensing device.
    Menéndez GO; Pichel ME; Spagnuolo CC; Jares-Erijman EA
    Photochem Photobiol Sci; 2013 Feb; 12(2):236-40. PubMed ID: 22972309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photon statistics and dynamics of fluorescence resonance energy transfer.
    Berglund AJ; Doherty AC; Mabuchi H
    Phys Rev Lett; 2002 Aug; 89(6):068101. PubMed ID: 12190612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopic and photophysical properties of dUTP and internally DNA bound fluorophores for optimized signal detection in biological formats.
    Linck L; Kapusta P; Resch-Genger U
    Photochem Photobiol; 2012; 88(4):867-75. PubMed ID: 22360746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stacking-induced fluorescence increase reveals allosteric interactions through DNA.
    Morten MJ; Lopez SG; Steinmark IE; Rafferty A; Magennis SW
    Nucleic Acids Res; 2018 Nov; 46(21):11618-11626. PubMed ID: 30277520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyanine dyes in biophysical research: the photophysics of polymethine fluorescent dyes in biomolecular environments.
    Levitus M; Ranjit S
    Q Rev Biophys; 2011 Feb; 44(1):123-51. PubMed ID: 21108866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photophysical properties of Na
    Naumann G; Lippmann K; Eilers J
    J Microsc; 2018 Nov; 272(2):136-144. PubMed ID: 30191999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strategy for Internal Labeling of Large RNAs with Minimal Perturbation by Using Fluorescent PNA.
    Schmitz AG; Zelger-Paulus S; Gasser G; Sigel RK
    Chembiochem; 2015 Jun; 16(9):1302-6. PubMed ID: 25872497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dispersion Correction Alleviates Dye Stacking of Single-Stranded DNA and RNA in Simulations of Single-Molecule Fluorescence Experiments.
    Grotz KK; Nueesch MF; Holmstrom ED; Heinz M; Stelzl LS; Schuler B; Hummer G
    J Phys Chem B; 2018 Dec; 122(49):11626-11639. PubMed ID: 30285443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.