These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
440 related articles for article (PubMed ID: 27783150)
1. Greater phenological sensitivity on the higher Tibetan Plateau: new insights from weekly 5 km EVI2 datasets. Qiu B; Zhong J; Tang Z; Feng M; Chen C; Wang X Int J Biometeorol; 2017 May; 61(5):807-820. PubMed ID: 27783150 [TBL] [Abstract][Full Text] [Related]
2. Interannual variations in spring phenology and their response to climate change across the Tibetan Plateau from 1982 to 2013. Liu L; Zhang X; Donnelly A; Liu X Int J Biometeorol; 2016 Oct; 60(10):1563-1575. PubMed ID: 26936843 [TBL] [Abstract][Full Text] [Related]
3. Temperature and snowfall trigger alpine vegetation green-up on the world's roof. Chen X; An S; Inouye DW; Schwartz MD Glob Chang Biol; 2015 Oct; 21(10):3635-46. PubMed ID: 25906987 [TBL] [Abstract][Full Text] [Related]
4. Assessing phenological change and climatic control of alpine grasslands in the Tibetan Plateau with MODIS time series. Wang C; Guo H; Zhang L; Liu S; Qiu Y; Sun Z Int J Biometeorol; 2015 Jan; 59(1):11-23. PubMed ID: 24682528 [TBL] [Abstract][Full Text] [Related]
5. Altitude explains insignificant autumn phenological changes across regions with large topography relief in the Tibetan Plateau. Cong N; Du Z; Zheng Z; Zhao G; Sun D; Zu J; Zhang Y Sci Total Environ; 2024 Apr; 921():171088. PubMed ID: 38387561 [TBL] [Abstract][Full Text] [Related]
6. Precipitation impacts on vegetation spring phenology on the Tibetan Plateau. Shen M; Piao S; Cong N; Zhang G; Jassens IA Glob Chang Biol; 2015 Oct; 21(10):3647-56. PubMed ID: 25926356 [TBL] [Abstract][Full Text] [Related]
7. Complex responses of spring alpine vegetation phenology to snow cover dynamics over the Tibetan Plateau, China. Wang S; Wang X; Chen G; Yang Q; Wang B; Ma Y; Shen M Sci Total Environ; 2017 Sep; 593-594():449-461. PubMed ID: 28351812 [TBL] [Abstract][Full Text] [Related]
8. Productivity and phenological responses of natural vegetation to present and future inter-annual climate variability across semi-arid river basins in Chile. Glade FE; Miranda MD; Meza FJ; van Leeuwen WJ Environ Monit Assess; 2016 Dec; 188(12):676. PubMed ID: 27858259 [TBL] [Abstract][Full Text] [Related]
9. Greater phenological sensitivity to temperature on higher Scottish mountains: new insights from remote sensing. Chapman DS Glob Chang Biol; 2013 Nov; 19(11):3463-71. PubMed ID: 23661383 [TBL] [Abstract][Full Text] [Related]
10. Assessment of varying changes of vegetation and the response to climatic factors using GIMMS NDVI3g on the Tibetan Plateau. Zhou Y; Fan J; Wang X PLoS One; 2020; 15(6):e0234848. PubMed ID: 32555722 [TBL] [Abstract][Full Text] [Related]
11. New perspective on spring vegetation phenology and global climate change based on Tibetan Plateau tree-ring data. Yang B; He M; Shishov V; Tychkov I; Vaganov E; Rossi S; Ljungqvist FC; Bräuning A; Grießinger J Proc Natl Acad Sci U S A; 2017 Jul; 114(27):6966-6971. PubMed ID: 28630302 [TBL] [Abstract][Full Text] [Related]
12. Spatial and temporal patterns of above- and below- ground biomass over the Tibet Plateau grasslands and their sensitivity to climate change. Wu Y; Li F; Zhang J; Liu Y; Li H; Zhou B; Shen B; Hou L; Xu D; Ding L; Chen S; Liu X; Peng J Sci Total Environ; 2024 Apr; 919():170900. PubMed ID: 38354804 [TBL] [Abstract][Full Text] [Related]
13. Shifting and extension of phenological periods with increasing temperature along elevational transects in southern Bavaria. Schuster C; Estrella N; Menzel A Plant Biol (Stuttg); 2014 Mar; 16(2):332-44. PubMed ID: 23957276 [TBL] [Abstract][Full Text] [Related]
14. Critical role of water conditions in the responses of autumn phenology of marsh wetlands to climate change on the Tibetan Plateau. Shen X; Shen M; Wu C; Peñuelas J; Ciais P; Zhang J; Freeman C; Palmer PI; Liu B; Henderson M; Song Z; Sun S; Lu X; Jiang M Glob Chang Biol; 2024 Jan; 30(1):e17097. PubMed ID: 38273510 [TBL] [Abstract][Full Text] [Related]
15. Assessing plant senescence reflectance index-retrieved vegetation phenology and its spatiotemporal response to climate change in the Inner Mongolian Grassland. Ren S; Chen X; An S Int J Biometeorol; 2017 Apr; 61(4):601-612. PubMed ID: 27562030 [TBL] [Abstract][Full Text] [Related]
16. Drier August and colder September slow down the delaying trend of leaf senescence in herbaceous plants on the Qinghai-Tibetan Plateau. Sun Q; Zhu J; Li B; Zhu S; Huang J; Chen X; Yuan W Sci Total Environ; 2024 Jan; 908():168504. PubMed ID: 37952658 [TBL] [Abstract][Full Text] [Related]
17. Changes in temperature sensitivity of spring phenology with recent climate warming in Switzerland are related to shifts of the preseason. Güsewell S; Furrer R; Gehrig R; Pietragalla B Glob Chang Biol; 2017 Dec; 23(12):5189-5202. PubMed ID: 28586135 [TBL] [Abstract][Full Text] [Related]
18. Linking altitudinal gradients and temperature responses of plant phenology in the Bavarian Alps. Cornelius C; Estrella N; Franz H; Menzel A Plant Biol (Stuttg); 2013 Jan; 15 Suppl 1():57-69. PubMed ID: 22686251 [TBL] [Abstract][Full Text] [Related]
19. Seasonal response of grasslands to climate change on the Tibetan Plateau. Yu H; Xu J; Okuto E; Luedeling E PLoS One; 2012; 7(11):e49230. PubMed ID: 23173048 [TBL] [Abstract][Full Text] [Related]
20. Grapevine phenology and climate change in Georgia. Cola G; Failla O; Maghradze D; Megrelidze L; Mariani L Int J Biometeorol; 2017 Apr; 61(4):761-773. PubMed ID: 27714505 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]