These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 27783465)

  • 1. Protease substrate profiling using bacterial display of self-blocking affinity proteins and flow-cytometric sorting.
    Sandersjöö L; Jonsson A; Löfblom J
    Biotechnol J; 2017 Jan; 12(1):. PubMed ID: 27783465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A protease substrate profiling method that links site-specific proteolysis with antibiotic resistance.
    Sandersjöö L; Kostallas G; Löfblom J; Samuelson P
    Biotechnol J; 2014 Jan; 9(1):155-62. PubMed ID: 24243818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate profiling of tobacco etch virus protease using a novel fluorescence-assisted whole-cell assay.
    Kostallas G; Löfdahl PÅ; Samuelson P
    PLoS One; 2011 Jan; 6(1):e16136. PubMed ID: 21267463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new prodrug form of Affibody molecules (pro-Affibody) is selectively activated by cancer-associated proteases.
    Sandersjöö L; Jonsson A; Löfblom J
    Cell Mol Life Sci; 2015 Apr; 72(7):1405-15. PubMed ID: 25287047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yeast Endoplasmic Reticulum Sequestration Screening for the Engineering of Proteases from Libraries Expressed in Yeast.
    Yi L; Taft JM; Li Q; Gebhard MC; Georgiou G; Iverson BL
    Methods Mol Biol; 2015; 1319():81-93. PubMed ID: 26060071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directed evolution of the 3C protease from coxsackievirus using a novel fluorescence-assisted intracellular method.
    Meister SW; Hendrikse NM; Löfblom J
    Biol Chem; 2019 Feb; 400(3):405-415. PubMed ID: 30521472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel fluorescence-assisted whole-cell assay for engineering and characterization of proteases and their substrates.
    Kostallas G; Samuelson P
    Appl Environ Microbiol; 2010 Nov; 76(22):7500-8. PubMed ID: 20851955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A recombinant fusion protein-based, fluorescent protease assay for high throughput-compatible substrate screening.
    Bozóki B; Gazda L; Tóth F; Miczi M; Mótyán JA; Tőzsér J
    Anal Biochem; 2018 Jan; 540-541():52-63. PubMed ID: 29122614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel affinity protein selection system based on staphylococcal cell surface display and flow cytometry.
    Kronqvist N; Löfblom J; Jonsson A; Wernérus H; Ståhl S
    Protein Eng Des Sel; 2008 Apr; 21(4):247-55. PubMed ID: 18239074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simplified characterization through site-specific protease-mediated release of affinity proteins selected by staphylococcal display.
    Kronqvist N; Löfblom J; Severa D; Ståhl S; Wernérus H
    FEMS Microbiol Lett; 2008 Jan; 278(1):128-36. PubMed ID: 18034830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screening for protease substrate by polyvalent phage display.
    Sedlacek R; Chen E
    Comb Chem High Throughput Screen; 2005 Mar; 8(2):197-203. PubMed ID: 15777183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate optimization and clinical validation of reporter peptides for MS-based protease profiling in serum specimens: a new approach for diagnosis of malignant disease.
    Yepes D; Jacob A; Dauber M; Costina V; Hofheinz R; Neumaier M; Findeisen P
    Int J Oncol; 2011 Jul; 39(1):145-54. PubMed ID: 21503574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peptide discovery using bacterial display and flow cytometry.
    Getz JA; Schoep TD; Daugherty PS
    Methods Enzymol; 2012; 503():75-97. PubMed ID: 22230566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dual-purpose synthetic colloidal platform for protease mapping: substrate profiling for Dengue and West Nile virus proteases.
    Marcon L; Kozak D; Battersby BJ; Chappell KJ; Fairlie DP; Young P; Trau M
    Anal Biochem; 2008 May; 376(1):151-3. PubMed ID: 18312847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A truncated and dimeric format of an Affibody library on bacteria enables FACS-mediated isolation of amyloid-beta aggregation inhibitors with subnanomolar affinity.
    Lindberg H; Härd T; Löfblom J; Ståhl S
    Biotechnol J; 2015 Sep; 10(11):1707-18. PubMed ID: 26184787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of infectivity in phage display as a tool to determine the substrate specificity of proteases.
    Chaparro-Riggers JF; Breves R; Maurer KH; Bornscheuer U
    Chembiochem; 2006 Jun; 7(6):965-70. PubMed ID: 16642518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteases that can distinguish among different post-translational forms of tyrosine engineered using multicolor flow cytometry.
    Varadarajan N; Pogson M; Georgiou G; Iverson BL
    J Am Chem Soc; 2009 Dec; 131(50):18186-90. PubMed ID: 19924991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Display of a naïve affibody library on staphylococci for selection of binders by means of flow cytometry sorting.
    Dahlsson Leitao C; Mestre Borras A; Jonsson A; Malm M; Kronqvist N; Fleetwood F; Sandersjöö L; Uhlén M; Löfblom J; Ståhl S; Lindberg H
    Biochem Biophys Res Commun; 2023 May; 655():75-81. PubMed ID: 36933310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An improved strategy for a genetic assay for site-specific proteolysis.
    Kang H; Kim SY; Park WJ
    Mol Cells; 2001 Apr; 11(2):263-6. PubMed ID: 11355710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering of TEV protease variants by yeast ER sequestration screening (YESS) of combinatorial libraries.
    Yi L; Gebhard MC; Li Q; Taft JM; Georgiou G; Iverson BL
    Proc Natl Acad Sci U S A; 2013 Apr; 110(18):7229-34. PubMed ID: 23589865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.