These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 27783811)

  • 1. Non-clinical studies required for new drug development - Part I: early in silico and in vitro studies, new target discovery and validation, proof of principles and robustness of animal studies.
    Andrade EL; Bento AF; Cavalli J; Oliveira SK; Freitas CS; Marcon R; Schwanke RC; Siqueira JM; Calixto JB
    Braz J Med Biol Res; 2016 Oct; 49(11):e5644. PubMed ID: 27783811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of ADME characteristics in drug discovery and their in silico evaluation: in silico screening of chemicals for their metabolic stability.
    Gombar VK; Silver IS; Zhao Z
    Curr Top Med Chem; 2003; 3(11):1205-25. PubMed ID: 12769701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The future of preclinical animal models in pharmaceutical discovery and development: a need to bring in cerebro to the in vivo discussions.
    Everitt JI
    Toxicol Pathol; 2015 Jan; 43(1):70-7. PubMed ID: 25351920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-silico approaches to multi-target drug discovery : computer aided multi-target drug design, multi-target virtual screening.
    Ma XH; Shi Z; Tan C; Jiang Y; Go ML; Low BC; Chen YZ
    Pharm Res; 2010 May; 27(5):739-49. PubMed ID: 20221898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Principles of early drug discovery.
    Hughes JP; Rees S; Kalindjian SB; Philpott KL
    Br J Pharmacol; 2011 Mar; 162(6):1239-49. PubMed ID: 21091654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The In Silico Drug Discovery Toolbox: Applications in Lead Discovery and Optimization.
    Bruno A; Costantino G; Sartori L; Radi M
    Curr Med Chem; 2019; 26(21):3838-3873. PubMed ID: 29110597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel trends in high-throughput screening.
    Mayr LM; Bojanic D
    Curr Opin Pharmacol; 2009 Oct; 9(5):580-8. PubMed ID: 19775937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Successful applications of computer aided drug discovery: moving drugs from concept to the clinic.
    Talele TT; Khedkar SA; Rigby AC
    Curr Top Med Chem; 2010; 10(1):127-41. PubMed ID: 19929824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Animal models of disease: pre-clinical animal models of cancer and their applications and utility in drug discovery.
    Ruggeri BA; Camp F; Miknyoczki S
    Biochem Pharmacol; 2014 Jan; 87(1):150-61. PubMed ID: 23817077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer-assisted drug development (CADD): an emerging technology for designing first-time-in-man and proof-of-concept studies from preclinical experiments.
    Gomeni R; Bani M; D'Angeli C; Corsi M; Bye A
    Eur J Pharm Sci; 2001 Jun; 13(3):261-70. PubMed ID: 11384848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Virtual screening strategies in drug discovery.
    McInnes C
    Curr Opin Chem Biol; 2007 Oct; 11(5):494-502. PubMed ID: 17936059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combating Diseases with Computational Strategies Used for Drug Design and Discovery.
    Makhouri FR; Ghasemi JB
    Curr Top Med Chem; 2018; 18(32):2743-2773. PubMed ID: 30663568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zebrafish: a complete animal model for in vivo drug discovery and development.
    Chakraborty C; Hsu CH; Wen ZH; Lin CS; Agoramoorthy G
    Curr Drug Metab; 2009 Feb; 10(2):116-24. PubMed ID: 19275547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Process validation and screen reproducibility in high-throughput screening.
    Coma I; Clark L; Diez E; Harper G; Herranz J; Hofmann G; Lennon M; Richmond N; Valmaseda M; Macarron R
    J Biomol Screen; 2009 Jan; 14(1):66-76. PubMed ID: 19171922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of Simplified in Vitro P-Glycoprotein Substrate Assay and in Silico Prediction Models To Evaluate Transport Potential of P-Glycoprotein.
    Ohashi R; Watanabe R; Esaki T; Taniguchi T; Torimoto-Katori N; Watanabe T; Ogasawara Y; Takahashi T; Tsukimoto M; Mizuguchi K
    Mol Pharm; 2019 May; 16(5):1851-1863. PubMed ID: 30933526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From drug target to leads--sketching a physicochemical pathway for lead molecule design in silico.
    Shaikh SA; Jain T; Sandhu G; Latha N; Jayaram B
    Curr Pharm Des; 2007; 13(34):3454-70. PubMed ID: 18220783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Academic collaborative models fostering the translation of physiological in vitro systems from basic research into drug discovery.
    Silvestri A; Vicente F; Vicent MJ; Stechmann B; Fecke W
    Drug Discov Today; 2021 Jun; 26(6):1369-1381. PubMed ID: 33677144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact of in silico screening in the discovery of novel and safer drug candidates.
    Rognan D
    Pharmacol Ther; 2017 Jul; 175():47-66. PubMed ID: 28223231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Strategic considerations on the design and choice of animal models for non-clinical investigations of cell-based medicinal products].
    Lehmann J; Schulz RM; Sanzenbacher R
    Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz; 2015 Nov; 58(11-12):1215-24. PubMed ID: 26431722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Challenges with the precise prediction of ABC-transporter interactions for improved drug discovery.
    Volpe DA; Qosa H
    Expert Opin Drug Discov; 2018 Aug; 13(8):697-707. PubMed ID: 29943645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.