These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 27783812)

  • 21. Dietary carbohydrate, muscle glycogen, and exercise performance during 7 d of training.
    Sherman WM; Doyle JA; Lamb DR; Strauss RH
    Am J Clin Nutr; 1993 Jan; 57(1):27-31. PubMed ID: 8416661
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The influence of dietary manipulation on plasma ammonia accumulation during incremental exercise in man.
    Greenhaff PL; Leiper JB; Ball D; Maughan RJ
    Eur J Appl Physiol Occup Physiol; 1991; 63(5):338-44. PubMed ID: 1773809
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A low carbohydrate diet affects autonomic modulation during heavy but not moderate exercise.
    Lima-Silva AE; Bertuzzi RC; Pires FO; Fronchetti L; Gevaerd MS; De-Oliveira FR
    Eur J Appl Physiol; 2010 Apr; 108(6):1133-40. PubMed ID: 20091180
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effects of dietary manipulation on blood acid-base status and the performance of high intensity exercise.
    Greenhaff PL; Gleeson M; Maughan RJ
    Eur J Appl Physiol Occup Physiol; 1987; 56(3):331-7. PubMed ID: 3569242
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effects of a high carbohydrate diet on postprandial energy expenditure during exercise in rats.
    Saitoh S; Matsuo T; Suzuki M
    Eur J Appl Physiol Occup Physiol; 1993; 66(5):445-50. PubMed ID: 8330614
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of dietary restriction and menstrual cycle on excess post-exercise oxygen consumption (EPOC) in young women.
    Fukuba Y; Yano Y; Murakami H; Kan A; Miura A
    Clin Physiol; 2000 Mar; 20(2):165-9. PubMed ID: 10735985
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effects of alterations in dietary carbohydrate intake on the performance of high-intensity exercise in trained individuals.
    Pitsiladis YP; Maughan RJ
    Eur J Appl Physiol Occup Physiol; 1999 Apr; 79(5):433-42. PubMed ID: 10208253
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of energy expenditure elevations after submaximal and supramaximal running.
    Laforgia J; Withers RT; Shipp NJ; Gore CJ
    J Appl Physiol (1985); 1997 Feb; 82(2):661-6. PubMed ID: 9049750
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Caffeine increases exogenous carbohydrate oxidation during exercise.
    Yeo SE; Jentjens RL; Wallis GA; Jeukendrup AE
    J Appl Physiol (1985); 2005 Sep; 99(3):844-50. PubMed ID: 15831802
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact of Muscle Glycogen Availability on the Capacity for Repeated Exercise in Man.
    Alghannam AF; Jedrzejewski D; Tweddle MG; Gribble H; Bilzon J; Thompson D; Tsintzas K; Betts JA
    Med Sci Sports Exerc; 2016 Jan; 48(1):123-31. PubMed ID: 26197030
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oxidation rate of exogenous carbohydrate during exercise is higher in boys than in men.
    Timmons BW; Bar-Or O; Riddell MC
    J Appl Physiol (1985); 2003 Jan; 94(1):278-84. PubMed ID: 12391100
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interpreting energy expenditure for anaerobic exercise and recovery: an anaerobic hypothesis.
    Scott CB
    J Sports Med Phys Fitness; 1997 Mar; 37(1):18-23. PubMed ID: 9190121
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prediction method for the volume of the excess post-exercise oxygen consumption (EPOC) following supramaximal exercise.
    Stefanova D
    Acta Physiol Pharmacol Bulg; 2000; 25(2):63-8. PubMed ID: 11140173
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carbohydrate consumption and variable-intensity exercise responses in boys and men.
    Guth LM; Rogowski MP; Guilkey JP; Mahon AD
    Eur J Appl Physiol; 2019 Apr; 119(4):1019-1027. PubMed ID: 30739166
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Carbohydrate availability and muscle energy metabolism during intermittent running.
    Foskett A; Williams C; Boobis L; Tsintzas K
    Med Sci Sports Exerc; 2008 Jan; 40(1):96-103. PubMed ID: 18091017
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fat adaptation followed by carbohydrate loading compromises high-intensity sprint performance.
    Havemann L; West SJ; Goedecke JH; Macdonald IA; St Clair Gibson A; Noakes TD; Lambert EV
    J Appl Physiol (1985); 2006 Jan; 100(1):194-202. PubMed ID: 16141377
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of continuous and intermittent bouts of isocaloric cycling and running exercise on excess postexercise oxygen consumption.
    Cunha FA; Midgley AW; McNaughton LR; Farinatti PT
    J Sci Med Sport; 2016 Feb; 19(2):187-92. PubMed ID: 25747467
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolic and sarcoplasmic reticulum Ca2+ cycling responses in human muscle 4 days following prolonged exercise.
    Duhamel TA; Green HJ; Perco JG; Ouyang J
    Can J Physiol Pharmacol; 2005 Jul; 83(7):643-55. PubMed ID: 16091790
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dietary carbohydrate and postexercise synthesis of proglycogen and macroglycogen in human skeletal muscle.
    Adamo KB; Tarnopolsky MA; Graham TE
    Am J Physiol; 1998 Aug; 275(2):E229-34. PubMed ID: 9688623
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Excess post-exercise oxygen consumption in untrained males: effects of intermittent durations of arm ergometry.
    Lyons S; Richardson M; Bishop P; Smith J; Heath H; Giesen J
    Appl Physiol Nutr Metab; 2006 Jun; 31(3):196-201. PubMed ID: 16770345
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.