These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 27783925)

  • 41. Visual circadian rhythmicity in splitbrain crayfish: a plastic behavioral expression of symmetric circadian pacemakers.
    Barrera-Mera B
    Brain Res Bull; 1985 Aug; 15(2):203-8. PubMed ID: 4041927
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Event-related potentials in an invertebrate: crayfish emit 'omitted stimulus potentials'.
    Ramón F; Hernández OH; Bullock TH
    J Exp Biol; 2001 Dec; 204(Pt 24):4291-300. PubMed ID: 11815653
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Stochastic resonance and synchronization in the crayfish caudal photoreceptor.
    Bahar S; Moss F
    Math Biosci; 2004; 188():81-97. PubMed ID: 14766095
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Simple photoreceptors in some invertebrates: physiological properties of a new photosensory modality.
    Gotow T; Nishi T
    Brain Res; 2008 Aug; 1225():3-16. PubMed ID: 18538313
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Extraretinal photoreceptors in the brain of the crayfish Cherax destructor.
    Sandeman DC; Sandeman RE; de Couet HG
    J Neurobiol; 1990 Jun; 21(4):619-29. PubMed ID: 1695916
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Factors influencing molting in the crayfish Procambarus clarki.
    Bittner GD; Kopanda R
    J Exp Zool; 1973 Oct; 186(1):7-16. PubMed ID: 4754414
    [No Abstract]   [Full Text] [Related]  

  • 47. Do arthropods feel anxious during molts?
    Bacqué-Cazenave J; Berthomieu M; Cattaert D; Fossat P; Delbecque JP
    J Exp Biol; 2019 Jan; 222(Pt 2):. PubMed ID: 30530836
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Circadian regulation of agonistic behavior in groups of parthenogenetic marbled crayfish, Procambarus sp.
    Farca Luna AJ; Hurtado-Zavala JI; Reischig T; Heinrich R
    J Biol Rhythms; 2009 Feb; 24(1):64-72. PubMed ID: 19150930
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The ultrastructure of a hitherto unrecognized gland, the cephalic gland in the head of Orconectes limosus which produces ecdysteroids.
    Gersch M; Birkenbeil H
    Gen Comp Endocrinol; 1979 Dec; 39(4):498-504. PubMed ID: 520812
    [No Abstract]   [Full Text] [Related]  

  • 50. Localization and expression of molt-inhibiting hormone and nitric oxide synthase in the central nervous system of the green shore crab, Carcinus maenas, and the blackback land crab, Gecarcinus lateralis.
    Pitts NL; Mykles DL
    Comp Biochem Physiol A Mol Integr Physiol; 2017 Jan; 203():328-340. PubMed ID: 27989866
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Implementation of pigment-dispersing factor-immunoreactive neurons in a standardized atlas of the brain of the cockroach Leucophaea maderae.
    Wei H; el Jundi B; Homberg U; Stengl M
    J Comp Neurol; 2010 Oct; 518(20):4113-33. PubMed ID: 20878779
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Adaptation-dependent differences in electroretinographic latency patterns in uniform and variegated horseshoe crabs.
    Kim B; Wasserman GS
    Biol Signals Recept; 1998; 7(4):227-34. PubMed ID: 9730582
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of light on stochastic phase synchronization in the crayfish caudal photoreceptor.
    Bahar S
    Biol Cybern; 2003 Sep; 89(3):200-13. PubMed ID: 14504939
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Physiological compensation in unilateral eyestalk ablated crayfish, Cherax quadricarinatus.
    Meade M; Watts S
    J Exp Zool; 2001 Feb; 289(3):184-9. PubMed ID: 11170015
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Synaptic connections between eyelet photoreceptors and pigment dispersing factor-immunoreactive neurons of the blowfly Protophormia terraenovae.
    Yasuyama K; Okada Y; Hamanaka Y; Shiga S
    J Comp Neurol; 2006 Jan; 494(2):331-44. PubMed ID: 16320242
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Effects of asphyxia on the visual activity of the crayfish with neural deafferentation of the eyestalks].
    Puche J; Barrera-Mera B
    Rev Esp Fisiol; 1993 Jun; 49(2):121-4. PubMed ID: 8378584
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Encoder adaptation modulates the visual responses of crayfish interneurons.
    Glantz RM; Schroeter JP
    J Neurophysiol; 2004 Jul; 92(1):327-40. PubMed ID: 15028740
    [TBL] [Abstract][Full Text] [Related]  

  • 58. MT2-like melatonin receptor modulates amplitude receptor potential in visual cells of crayfish during a 24-hour cycle.
    Mendoza-Vargas L; Solís-Chagoyán H; Benítez-King G; Fuentes-Pardo B
    Comp Biochem Physiol A Mol Integr Physiol; 2009 Dec; 154(4):486-92. PubMed ID: 19666131
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Circadian rhythms in the lateral eye of the Japanese horseshoe crab.
    Saito T; Yamamoto T; Powers MK; Barlow RB
    Biol Bull; 1997 Oct; 193(2):200-1. PubMed ID: 9390384
    [No Abstract]   [Full Text] [Related]  

  • 60. Characterization of a molt-inhibiting hormone (MIH) of the crayfish, Orconectes limosus, by cDNA cloning and mass spectrometric analysis.
    Bulau P; Okuno A; Thome E; Schmitz T; Peter-Katalinic J; Keller R
    Peptides; 2005 Nov; 26(11):2129-36. PubMed ID: 16269348
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.