These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 27783928)
41. Mechanism of Jones CS; Anderson AC; Clarke AJ Proc Natl Acad Sci U S A; 2021 Sep; 118(36):. PubMed ID: 34480000 [TBL] [Abstract][Full Text] [Related]
42. Structural basis for substrate-specific acetylation of Nα-acetyltransferase Ard1 from Sulfolobus solfataricus. Chang YY; Hsu CH Sci Rep; 2015 Mar; 5():8673. PubMed ID: 25728374 [TBL] [Abstract][Full Text] [Related]
43. Crystal structure of a GCN5-related N-acetyltransferase: Serratia marcescens aminoglycoside 3-N-acetyltransferase. Wolf E; Vassilev A; Makino Y; Sali A; Nakatani Y; Burley SK Cell; 1998 Aug; 94(4):439-49. PubMed ID: 9727487 [TBL] [Abstract][Full Text] [Related]
44. Mapping roles of active site residues in the acceptor site of the PA3944 Gcn5-related N-acetyltransferase enzyme. Variot C; Capule D; Arolli X; Baumgartner J; Reidl C; Houseman C; Ballicora MA; Becker DP; Kuhn ML Protein Sci; 2023 Aug; 32(8):e4725. PubMed ID: 37418656 [TBL] [Abstract][Full Text] [Related]
45. Purification, crystallization and preliminary X-ray diffraction analysis of the N-acetyltransferase SAV0826 from Staphylococcus aureus. Srivastava P; Khandokar YB; Forwood JK Acta Crystallogr F Struct Biol Commun; 2014 Feb; 70(Pt 2):211-4. PubMed ID: 24637759 [TBL] [Abstract][Full Text] [Related]
46. Crystal structure of RimI from Salmonella typhimurium LT2, the GNAT responsible for N(alpha)-acetylation of ribosomal protein S18. Vetting MW; Bareich DC; Yu M; Blanchard JS Protein Sci; 2008 Oct; 17(10):1781-90. PubMed ID: 18596200 [TBL] [Abstract][Full Text] [Related]
47. Leishmania major thialysine Nepsilon-acetyltransferase: identification of amino acid residues crucial for substrate binding. Lüersen K FEBS Lett; 2005 Oct; 579(24):5347-52. PubMed ID: 16194533 [TBL] [Abstract][Full Text] [Related]
48. GCN5-related N-acetyltransferases: a structural overview. Dyda F; Klein DC; Hickman AB Annu Rev Biophys Biomol Struct; 2000; 29():81-103. PubMed ID: 10940244 [TBL] [Abstract][Full Text] [Related]
49. Loss of Chloroplast GNAT Acetyltransferases Results in Distinct Metabolic Phenotypes in Arabidopsis. Ivanauskaite A; Rantala M; Laihonen L; Konert MM; Schwenner N; Mühlenbeck JS; Finkemeier I; Mulo P Plant Cell Physiol; 2023 May; 64(5):549-563. PubMed ID: 37026998 [TBL] [Abstract][Full Text] [Related]
50. New N-acetyltransferase fold in the structure and mechanism of the phosphonate biosynthetic enzyme FrbF. Bae B; Cobb RE; DeSieno MA; Zhao H; Nair SK J Biol Chem; 2011 Oct; 286(41):36132-36141. PubMed ID: 21865168 [TBL] [Abstract][Full Text] [Related]
51. PanM, an acetyl-coenzyme A sensor required for maturation of L-aspartate decarboxylase (PanD). Stuecker TN; Tucker AC; Escalante-Semerena JC mBio; 2012; 3(4):. PubMed ID: 22782525 [TBL] [Abstract][Full Text] [Related]
52. Molecular basis for Gcn5/PCAF histone acetyltransferase selectivity for histone and nonhistone substrates. Poux AN; Marmorstein R Biochemistry; 2003 Dec; 42(49):14366-74. PubMed ID: 14661947 [TBL] [Abstract][Full Text] [Related]
53. Functional annotation and kinetic characterization of PhnO from Salmonella enterica. Errey JC; Blanchard JS Biochemistry; 2006 Mar; 45(9):3033-9. PubMed ID: 16503658 [TBL] [Abstract][Full Text] [Related]
54. Repurposing the GNAT Fold in the Initiation of Polyketide Biosynthesis. Skiba MA; Tran CL; Dan Q; Sikkema AP; Klaver Z; Gerwick WH; Sherman DH; Smith JL Structure; 2020 Jan; 28(1):63-74.e4. PubMed ID: 31785925 [TBL] [Abstract][Full Text] [Related]
55. System-wide studies of N-lysine acetylation in Rhodopseudomonas palustris reveal substrate specificity of protein acetyltransferases. Crosby HA; Pelletier DA; Hurst GB; Escalante-Semerena JC J Biol Chem; 2012 May; 287(19):15590-601. PubMed ID: 22416131 [TBL] [Abstract][Full Text] [Related]
56. Crystallographic and mass spectrometric analyses of a tandem GNAT protein from the clavulanic acid biosynthesis pathway. Iqbal A; Arunlanantham H; Brown T; Chowdhury R; Clifton IJ; Kershaw NJ; Hewitson KS; McDonough MA; Schofield CJ Proteins; 2010 May; 78(6):1398-407. PubMed ID: 20014241 [TBL] [Abstract][Full Text] [Related]
57. Gcn5-Related Baumgartner JT; Habeeb Mohammad TS; Czub MP; Majorek KA; Arolli X; Variot C; Anonick M; Minor W; Ballicora MA; Becker DP; Kuhn ML Front Mol Biosci; 2021; 8():646046. PubMed ID: 33912589 [TBL] [Abstract][Full Text] [Related]
58. Application of a fluorescent histone acetyltransferase assay to probe the substrate specificity of the human p300/CBP-associated factor. Trievel RC; Li FY; Marmorstein R Anal Biochem; 2000 Dec; 287(2):319-28. PubMed ID: 11112280 [TBL] [Abstract][Full Text] [Related]
59. Mutational analysis of conserved residues in the GCN5 family of histone acetyltransferases. Langer MR; Tanner KG; Denu JM J Biol Chem; 2001 Aug; 276(33):31321-31. PubMed ID: 11397810 [TBL] [Abstract][Full Text] [Related]
60. Identification of amino acid residues essential for the yeast N-acetyltransferase Mpr1 activity by site-directed mutagenesis. Kotani T; Takagi H FEMS Yeast Res; 2008 Jun; 8(4):607-14. PubMed ID: 18373682 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]