These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 27783928)

  • 61. Structural and Functional Investigation of FdhC from Acinetobacter nosocomialis: A Sugar N-Acyltransferase Belonging to the GNAT Superfamily.
    Salinger AJ; Thoden JB; Holden HM
    Biochemistry; 2016 Aug; 55(32):4509-18. PubMed ID: 27404806
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Structure of the α-tubulin acetyltransferase, αTAT1, and implications for tubulin-specific acetylation.
    Friedmann DR; Aguilar A; Fan J; Nachury MV; Marmorstein R
    Proc Natl Acad Sci U S A; 2012 Nov; 109(48):19655-60. PubMed ID: 23071314
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Structural and functional characterization of the α-tubulin acetyltransferase MEC-17.
    Davenport AM; Collins LN; Chiu H; Minor PJ; Sternberg PW; Hoelz A
    J Mol Biol; 2014 Jul; 426(14):2605-16. PubMed ID: 24846647
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Expanded lysine acetylation specificity of Gcn5 in native complexes.
    Grant PA; Eberharter A; John S; Cook RG; Turner BM; Workman JL
    J Biol Chem; 1999 Feb; 274(9):5895-900. PubMed ID: 10026213
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Modulating acetyl-CoA binding in the GCN5 family of histone acetyltransferases.
    Langer MR; Fry CJ; Peterson CL; Denu JM
    J Biol Chem; 2002 Jul; 277(30):27337-44. PubMed ID: 11994311
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Structural insights into the substrate specificity of the Rhodopseudomonas palustris protein acetyltransferase RpPat: identification of a loop critical for recognition by RpPat.
    Crosby HA; Rank KC; Rayment I; Escalante-Semerena JC
    J Biol Chem; 2012 Nov; 287(49):41392-404. PubMed ID: 23076154
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Kinetic mechanism of the histone acetyltransferase GCN5 from yeast.
    Tanner KG; Langer MR; Kim Y; Denu JM
    J Biol Chem; 2000 Jul; 275(29):22048-55. PubMed ID: 10811654
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The structure and specificity of Escherichia coli maltose acetyltransferase give new insight into the LacA family of acyltransferases.
    Lo Leggio L; Dal Degan F; Poulsen P; Andersen SM; Larsen S
    Biochemistry; 2003 May; 42(18):5225-35. PubMed ID: 12731863
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Molecular Basis for Cohesin Acetylation by Establishment of Sister Chromatid Cohesion N-Acetyltransferase ESCO1.
    Rivera-Colón Y; Maguire A; Liszczak GP; Olia AS; Marmorstein R
    J Biol Chem; 2016 Dec; 291(51):26468-26477. PubMed ID: 27803161
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Structural Studies on a Glucosamine/Glucosaminide N-Acetyltransferase.
    Dopkins BJ; Tipton PA; Thoden JB; Holden HM
    Biochemistry; 2016 Aug; 55(32):4495-508. PubMed ID: 27348258
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Structural basis of cofactor-mediated stabilization and substrate recognition of the α-tubulin acetyltransferase αTAT1.
    Yuzawa S; Kamakura S; Hayase J; Sumimoto H
    Biochem J; 2015 Apr; 467(1):103-13. PubMed ID: 25602620
    [TBL] [Abstract][Full Text] [Related]  

  • 72. GNAT toxins of bacterial toxin-antitoxin systems: acetylation of charged tRNAs to inhibit translation.
    Yeo CC
    Mol Microbiol; 2018 May; 108(4):331-335. PubMed ID: 29624768
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Biochemical and thermodynamic analyses of Salmonella enterica Pat, a multidomain, multimeric N(ε)-lysine acetyltransferase involved in carbon and energy metabolism.
    Thao S; Escalante-Semerena JC
    mBio; 2011; 2(5):. PubMed ID: 22010215
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Structural basis for histone and phosphohistone binding by the GCN5 histone acetyltransferase.
    Clements A; Poux AN; Lo WS; Pillus L; Berger SL; Marmorstein R
    Mol Cell; 2003 Aug; 12(2):461-73. PubMed ID: 14536085
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Crystal structure of the histone acetyltransferase domain of the human PCAF transcriptional regulator bound to coenzyme A.
    Clements A; Rojas JR; Trievel RC; Wang L; Berger SL; Marmorstein R
    EMBO J; 1999 Jul; 18(13):3521-32. PubMed ID: 10393169
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The roles of bacterial GCN5-related N-acetyltransferases.
    Xie L; Zeng J; Luo H; Pan W; Xie J
    Crit Rev Eukaryot Gene Expr; 2014; 24(1):77-87. PubMed ID: 24579671
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Cj1123c (PglD), a multifaceted acetyltransferase from Campylobacter jejuni.
    Demendi M; Creuzenet C
    Biochem Cell Biol; 2009 Jun; 87(3):469-83. PubMed ID: 19448740
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Structure of the yeast histone acetyltransferase Hat1: insights into substrate specificity and implications for the Gcn5-related N-acetyltransferase superfamily.
    Dutnall RN; Tafrov ST; Sternglanz R; Ramakrishnan V
    Cold Spring Harb Symp Quant Biol; 1998; 63():501-7. PubMed ID: 10384314
    [No Abstract]   [Full Text] [Related]  

  • 79. Gene activation by histone and factor acetyltransferases.
    Berger SL
    Curr Opin Cell Biol; 1999 Jun; 11(3):336-41. PubMed ID: 10395565
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Biochemical characterization of Hpa2 and Hpa3, two small closely related acetyltransferases from Saccharomyces cerevisiae.
    Sampath V; Liu B; Tafrov S; Srinivasan M; Rieger R; Chen EI; Sternglanz R
    J Biol Chem; 2013 Jul; 288(30):21506-13. PubMed ID: 23775086
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.